
FINAL REPORT

SUMMER INTERNSHIP

FERMI NATIONAL ACCELERATOR LABORATORY

SCIENTIFIC COMPUTING DIVISION

New flexible, reliable and secure logging
channel for distributed workflows

Authors:
Leonardo Lai

Email:
leonardo.lai@live.com

October 11, 2019

CONTENTS CONTENTS

Contents

1 Abstract 3

2 Scientific computing 3
2.1 HTC/HPC . 3
2.2 HTCondor . 4
2.3 GlideinWMS . 5

3 GlideinWMS Monitoring 6
3.1 Overview . 6
3.2 Current issues . 6

4 New logging system 7
4.1 Overview . 7
4.2 Format . 8
4.3 Concurrency . 9
4.4 Log forwarding . 10
4.5 Security . 10

4.5.1 Assumptions . 11
4.5.2 Technologies . 11
4.5.3 Security model . 12
4.5.4 Token structure . 12
4.5.5 Factory token organization . 13
4.5.6 Copying tokens from Factory to glidein 13
4.5.7 Glidein using the token . 14
4.5.8 Server-side verification . 14
4.5.9 Other considerations . 15

4.6 API . 15
4.6.1 Initialization . 15
4.6.2 Writing . 16
4.6.3 Merging . 16
4.6.4 Remote forwarding . 16

5 Future steps 16
5.1 Frontend token generation . 16
5.2 Token renewal . 17

6 Conclusions 17

7 Acknowledgements 17

8 Appendices 18

A Self-extracting scripts 18

B ShellCheck CI 18

2

CONTENTS 1. ABSTRACT

1 Abstract

This document is an overview of the activities that I carried out during my internship
at Fermilab between August and September 2019. My task was to develop a new
logging channel for glideins within the GlideinWMS project, a workload manager
for distributed systems. The new channel was required to be reliable, versatile and
secure, overcoming most of the issues that affect the current implementation.

2 Scientific computing

2.1 HTC/HPC

Scientific computing exploits computers to solve complex problems that arise from
mathematics, physics, chemistry and so on. In this domain, a standard desktop ma-
chine is typically not enough, but you need more and more powerful machines to
cope with different requirements. Specifically, the expression High Throughput Com-
puting (HTC) is used to describe the need of many resources over an extended period
of time, whereas High Performance Computing (HPC) denotes the same but for short
intervals. Scientific experiments are indeed very demanding in terms of computa-
tional resources, and the requirements strongly vary between the experiments.
Examples can be easily found in physics. In the Muon g-2 experiment, which aims
to precisely measure the magnetic dipole moment of the muon, the data acquisition
system must be able to handle bursts of 18Gbit/s [6]. The Dark Energy Survey
(DES) experiment, designed to map the universe and study its galaxies, produces
2.5TB of image data per night [1]. This is a lot of data, considering that it must be
eventually processed. Finally we have the Large Hadron Collider (LHC) experiment,
whose particle collisions generate the outstanding amount of 1PB/s. Even though
the most of the events get discarded by the trigger, the LHC experiments produce
about 15PB of raw data each year that must be stored, processed, and analyzed [4].
Historically, the request for computing resources for scientific applications has been
growing steadily. In the 1960s, the computer that managed to land the first man
on the moon was less powerful than today’s smartphones by many orders of mag-
nitude. In the 1980s, vertical scaling led to massive supercomputers, nevertheless
those were still below modern laptops. It’s not until the end of the 20th century that
parallelization became the paradigm to pursuit to achieve performances that no ex-
isting machine could ever reach individually. For instance, the Earth Simulator was
a supercomputer assembled in Japan out of 640 identical nodes, capable of operat-
ing at 35.86 Tflops, used for simulations of the terrestrial atmosphere and oceans.
Today is the era of cloud services and distributed computing. Not only you can have
thousands of machines working in parallel, but they can be geographically very far
from each other. They are joined together via network to form a single virtual su-
percomputer. Clear advantages in these solutions are, aside from their commercial
applications, the intrinsic scalability (just add more machines), flexibility (diversified
hardware/software) and reliability (redundancy is possible).

3

2. SCIENTIFIC COMPUTING CONTENTS

2.2 HTCondor

Clusters are usually complex systems, hard to manage even for experienced com-
puter engineers, let alone for physicists and other kinds of scientists. While specific
expert-level skills are required to setup and configure such a system, the final user
is not necessarily expected to be a computer specialist. Therefore you need a mech-
anism that hides the internal low-level complexity (OS, networking, scheduling, ...),
and exposes a simple interface to those who just want to run their code and get the
results back. This is done by a batch system, or workload management system; there
are many notable examples, like HTCondor, SLURM, TORQUE, LSF [7, 13–15].

HTCondor, developed at the University of Wisconsin-Madison, provides a job queu-
ing mechanism, scheduling policy, priority scheme, resource monitoring, and re-
source management. HTCondor handles submitted jobs placing them into a queue,
and also decides where to run them based upon a policy. Eventually, it informs the
user upon completion. A unique feature of HTCondor are ClassAds, a flexible frame-
work to express job requirements or preferences. HTCondor systems include a single
central manager node and a pool of several worker machines. The central manager
keeps the state of the system, collects updates from the pool and matches jobs to
proper resources.

Figure 1: HTCondor architecture

4

CONTENTS 2. SCIENTIFIC COMPUTING

2.3 GlideinWMS

Everything has limits, and HTCondor is no exception. A grid is typically clustered
into hundreds of different pools, possibly belonging to different providers, each run-
ning its own workload manager. These batch systems are almost never compatible
between them natively, so a further abstraction level is needed to form a homo-
geneous grid-wise pool of resources. A Fermilab project, GlideinWMS, addresses
this challenge, offering a virtually uniform pool by exploiting the concept of glidein,
that is a pilot job with a proper configuration. A glidein is submitted as a regular
HTCondor job; it performs an initialization routine on the worker node (hardware
detection, environment setup, file downloading, error handling, ...) and then, at the
end of the procedure, it shows as a resource to the virtual cluster, ready to accept
user jobs. The two most important components of the GlideinWMS architecture are
the Frontend and the Factory. The former periodically polls the user pool for queued
jobs, and checks whether there is an adequate number of available glideins; the lat-
ter is instead responsible for creating and submitting new glideins upon request by
the Frontend. The benefits of using GlideinWMS are countless. First of all, it pro-
vides support for many different types of sites, including but not limited to Google
CE and AWS. The same glidein can be reused to run subsequent jobs from the user
pool after one finishes, resulting in increased efficiency. Moreover, glideins provide
a kind of fault-tolerance too: if a site does not for some reason, user jobs won’t
get lost because the failure is first detected by the pilot job. It’s important to note
that GlideinWMS inherits the schedd daemon directly from HTCondor, thus the job
submission is exactly the same as before.

Figure 2: GlideinWMS architecture

5

3. GLIDEINWMS MONITORING CONTENTS

3 GlideinWMS Monitoring

3.1 Overview

Monitoring is a critical task in any complex system; having a detailed view over the
state of the system components not only enables you to collect significant statistics
and perform fine-grained analysis, but also allows you to precisely locate issues, if
any, and eventually fix them. The time spent in debugging activities is in general
inversely proportional to the clarity and completeness of the available reports. A
solid logging infrastructure is therefore needed to keep both product quality and
team productivity above acceptable levels, especially for large projects.
In GlideinWMS, data are collected and handled in different ways. All the logs gen-
erated by HTCondor are still available (e.g. MasterLog, CollectorLog, StarterLog),
which are particularly useful to troubleshoot problems related to HTCondor config-
uration, or even low-level issues related to networking and authentication. ClassAds
(a structured language used by the entities to express their attributes) messages can
also be inspected to view the communications between the objects. Moreover, there
are dedicated logs for the Glidein factories, VO frontends and grid entries too.
Unfortunately, debugging the lifecycle of a glidein relies solely on the analysis of the
messages print to standard output (stdout and standard error (stderr). This imposes
strong limitations in terms of flexibility and reliability, as shown below.

3.2 Current issues

The content of glidein stdout and stderr is extremely heterogeneous and unstruc-
tured. Among the various messages, it is possible to find debug strings, configuration
dumps, output of failed commands, and so on. Moreover, the provided information
is rather incomplete: very few lines include a timestamp, fewer a severity level, and
almost none the subject, that is the name of the script which produced that log entry.

Figure 3: Examples of messages from stdout/stderr.

6

CONTENTS 4. NEW LOGGING SYSTEM

The fact that stdout and stderr are also exploited as means to return the job results
(in XML format) makes the situation even more confusing.
Another issue is the availability of the logs. Stdout and stderr are file descriptors in
the worker nodes, so the logs are written there. However, physical access to those
machines is generally not possible, because they may belong to various organizations
with different security and access policies. In the current implementation, to make
stdout and stderr logs available somewhere else too, they are flushed and sent to
the Factory once, at the very end of the glidein’s life. Problems arise when a glidein
terminates prematurely. In UNIX-like systems, every process has its own stdout and
stderr FD; these exist for as long as the respective process is alive, but are perma-
nently destroyed thereafter. Hence, if a process dies abruptly (e.g. when killed with
a signal) then its stdout/err are immediately freed as well. A glidein is nothing a
process, so it suffers the same behavior: terminating it from the outside (with a sig-
nal) causes the immediate deletion of its stdout and stderr logs, which will never
make their way to the Factory and become available. This is a major limitation in
terms of troubleshooting, since these logs could be very useful to analyze the glidein
state right before its death, especially if anomalous.
Multi-threading creates problems too. A glidein may either execute in a single thread
or spawn multiple ones. Another source of possibly concurrent threads are the cron
jobs. It is well known that race conditions can occur when two or more entities
interact at the same time with the same resource, in this case the stdout/err. A possi-
ble scenario involves two threads attempting to write to stdout simultaneously: the
result is unpredictable, and not necessarily the same as if the threads were executed
one after the other. Not only this affects the quality of the log in terms of readability,
but also represents a major difficulty for automatic tools that parse and analyze it.
Finally, the current system does not provide any mechanism to forward/broadcast
the logs to multiple nodes other than the Factory. In practice, this means that one
must access the Factory machine to view the logs, instead of reading them in a
dedicated log server.

4 New logging system

4.1 Overview

In order to overcome all the aforementioned issues, a new independent logging
channel is added to GlideinWMS. It is specifically designed to:

• provide complete information in a structured format

• work correctly even in multithreaded scenarios

• be independent from the process

• make the logs available wherever needed

• be secure

• be easy to use

7

4. NEW LOGGING SYSTEM CONTENTS

4.2 Format

The new logging channel adheres to the JSON (JavaScript Object Notation) format.
The choice of JSON against other options is motivated by practical considerations.
With respect to XML, it is more compact and definitely more readable. YAML could
be an alternative too: despite it being less verbose, JSON is easier to parse and
sometimes faster to deserialize.
Every glidein has its own log file. Each entry of the log is represented by a JSON
object, containing useful information about the recorded event. The core is the
”content” attribute, which stores the log line as a string. Actually, depending on the
”type” field, the content may contain either a standard plain-text message or the
body of a chosen file. The attributes are:

– invoker: the name of the script that logged the event

– pid: ID of the process that logged the event

– timestamp: instant when the event was recorded

– severity: severity level of the logged information

– type: determines if the content is a message (”text”) or a file (”file”).

– filename: filename if type is ”file”, empty otherwise.

– content: string message if type is ”text”, or the content of the specified file
encoded in base64 if type is ”file” and compressed. Encoding helps sanitizing
the input.

Figure 4: A couple of log entries with the new JSON-based format

8

CONTENTS 4. NEW LOGGING SYSTEM

The whole log is a JSON array containing all the event objects sorted by timestamp.
Additionally, another object (metadata) is prepended to the list: its attributes pro-
vide information about the log subject, that is the glidein, including the names of
the Factory, Frontend, Group, Entry, and many others.

4.3 Concurrency

As previously mentioned, multiple processes/threads may run concurrently within
the context of the same glidein. In this case, uncoordinated simultaneous write
accesses to the log file, which is shared among these threads, would interfere with
each other and jeopardize the log integrity.
A possible solution is to use of locking mechanisms (mutex, semaphores, monitors).
A properly designed locking scheme would indeed ensure the correctness of the sys-
tem, though affecting non-functional properties like performance. When acquiring
a lock, a process must wait if another holds it; such wait can be detrimental for the
system efficiency, especially if the shared resource is frequently needed and many
threads compete for it. Moreover, locking protocols are notoriously delicate and
easy to mess up when implementing them from scratch; the consequences may be
unpredictable and tricky to figure out, ranging from minor malfunctions to dead-
locks. Due to these reasons, a lock-free solution would be preferable.
Another possibility is sharding: the idea is to write every log entry to a separate file,
and then merge them to a single log. This way the threads cannot interfere because
they do not write to the same location when logging a new event. However, you
still have the problem of merging (coalescing): who should it, how and when? If
you choose to merge the shards only at the end of the glidein’s life, then the log file
will be written by the last thread without race conditions, but the log itself won’t
be available until very late: this is a strong limitation in terms of flexibility. On the
other side, if you let any thread perform the merging at any time, then the problem of
having multiple access to the same resource (the log file) rises again. Furthermore,
what could happen if a thread starts the merging procedure meanwhile another is
writing a shard?
The real solution is a hybrid of the previous ones, based on three principles:

• sharding

• minimal use of locking (hidden)

• isolation between operations

The whole logging process takes places in four distinct directories: ”logs”, ”shards”,
”creating” and ”coalescing”. When a process produces a new log entry, what actu-
ally happens is the creation of a shard file in the ”creating” directory, whose name
replicates info of the body (e.g. timestamp, severity, ...) to speed up post-processing
operations like sorting. The ”creating” directory protects the files from other accesses
while they’re being created; When the shard is fully written, it is moved to the shards
folder, where it becomes ready for subsequent operations like merging. When a pro-
cess wants to join all the shards, it first checks whether the coalescing directory

9

4. NEW LOGGING SYSTEM CONTENTS

already exists: if so, all the files in shards are moved to coalescing, along with a
copy of the current log from logs; otherwise, the coalescing request is dropped. All
the shards in coalescing are then concatenated to the previous log in chronological
order, to form a new log file. The latter replaces the older one in logs, and the
coalescing folder is forcefully deleted together with its content. This pattern may
look rather intricate, but it ensures that two processes never operate on the same
resources concurrently, indeed there are different folders for writing, merging and
storing. Although there is no explicit use of locks, the scheme is correct only under
the condition of atomic ”move” and ”create directory” operations. Luckily, this prop-
erty holds for the Unix commands mv and mkdir, at least for local file systems. Their
implementation actually uses locks at kernel level, but it is no problem as long as
lock/unlock operations are sporadic and rarely block. Of course, we assume that the
OS primitives are bug free.

4.4 Log forwarding

The log is generated in the worker node, a location which is far from being the
ideal place where to have it. Typically these machines belong to different remote
organizations, and accessing them may not be even possible due to security policies.
An option is to forward the log to the glidein’s Factory: this can be easily done by
appending the log to the stderr, which is flushed anyway to the Factory when the
glidein terminates. It is a good solution, yet not so flexible. Other problems persist
too, like the missing logs for killed glideins.
Another possibility is sending them to one or more HTTP servers. Their URLs can be
specified in the Factory configuration file with the attribute log recipients:

<a t t r const=” Fa l se ” g l i d e i n p u b l i s h=” Fa l se ” pub l i sh=” Fa l se ”
name=”LOG RECIPIENTS FACTORY” parameter=” True ”
j o b p u b l i s h=” True ” type=” s t r i n g ” value=” u r l . com/ log ” />

If multiple servers are present, their URLs must be separated by white space. In the
future, these addresses will be configurable from the Frontend too.
Analogously, the LOG RECIPIENTS FACTORY attribute can be individually set for any
entry, in its own attr tag.
When a glidein requests to send its log to a remote server, it also includes a dump
of the produced stdout and stderr; three HTTP PUT requests are sent out, one for
each file (stdout, stderr, log). The server usually replies with a ”201 Created” in case
of success, or another HTTP code if something else occurred. The full log is sent
anyway whenever the glidein is about to end, regardless of whether the termination
was spontaneous or forced by external processes.

4.5 Security

Logs are sent from the entry nodes to the log server over the Internet, which is an
inherently insecure channel unless to adopt proper cryptography protocols. Some of
the potential threats to account in the design of the system are:

10

CONTENTS 4. NEW LOGGING SYSTEM

• Logs being sniffed and read by unauthorized parties (eavesdropping)

• Entities posting logs to the server without authorization

• Malicious agents pretending to be someone else when posting logs to the server
(impersonation, forgery)

• Attackers being able to tamper communication messages (malleability)

• Authentication secret information being stolen by inspecting the packets (iden-
tity theft)

Cybersecurity is a complex matter, full of pitfalls and where vulnerabilities always
find their way to sneak in. Thus it is generally recommended to use consolidated
standard schemes rather than inventing new protocols from scratch, and we follow
this approach hereafter.

4.5.1 Assumptions

Some assumptions were identified before designing the security scheme:

• The GlideinWMS software is secure, and the scripts provided by the VO Fron-
tend are secure as well.

• The hosts are responsible for keeping the secret keys safe from malicious agents,
making them unlikely to be stolen. If an intruder ever steals a secret key, the
security is assumed to be compromised for all the entities relying on it. In such
circumstance, it is desirable to mitigate the negative consequences as much as
possible, although not strictly required.

• Log servers can be located anywhere; it may hosted on the same machine of a
Factory, a Frontend or simply be standalone.

4.5.2 Technologies

The following cybersecurity concepts are at the heart of the implemented scheme.

• Digital Certificate: electronic document used to prove the ownership of a public
key. It contains information about the identity of the owner, and is generally
issued by a trusted Certification Authority (CA).

Figure 5: A ”man in the middle” in the network between the glidein and the log server
can intercept and manipulate the packet if no security mechanism is enforced.

11

4. NEW LOGGING SYSTEM CONTENTS

• SSL (Secure Sockets Layer) [5]: cryptographic protocols designed to provide
privacy and data integrity between hosts in a network.

• TLS (Transport Layer Security) [2]: the modern successor of (deprecated) SSL.

• JWT (JSON Web Token) [8]: a small JSON object used to safely exchange claims
between two parties. The header defines which protocol to use, the payload
contains the actual claims, and the signature is used to verify the token itself.
A secret key is used for both generating and verifying it.

• Symmetric key cryptography: protocols where two entities share a secret, that
is used to encrypt/decrypt or sign/verify their messages. The secret must never
be revealed to third parties.

• Asymmetric cryptography: protocols where the entities own pairs of corre-
sponding private and public keys. The private one must never be revealed
to others, and it is used to encrypt or sign documents. The other key is instead
of public domain, and used to decrypt messages or verify signatures.

4.5.3 Security model

When a glidein wants to send a log to any server, it must include a JWT in the HTTP
Header field. The Factory issues (and signs) the token and transfers it to the glidein
via HTCondor secure transfer.
At reconfig time, the Factory predetermines the list of tokens to be eventually trans-
ferred to each glidein, on the basis of the configuration files. These are only names,
though: the tokens are effectively created later, when the Factory service starts.
The triplet {Factory}-{entry}-{recipient} uniquely identifies a token, provided that
name duplicates do not exist.

4.5.4 Token structure

The header defines the algorithm to use for signing. Here we use HS256, that is
HMAC with SHA256 [3, 9], which requires a shared secret between the issuer and
the audience. A public key protocol (RSA [12]) would even work better, but the
implementation requires Python 2.7 and there are still SL6 machines supporting
Python 2.6 only. The payload contains the following fields:

• sub: Subject of the token; it is the entry name

• iss: Issuer of the token; can be a Factory or a Frontend.

• aud: Audience; it is the recipient address

• iat: Timestamp of issuance

• exp: Expiration timestamp

• nbf: First timestamp of validity

12

CONTENTS 4. NEW LOGGING SYSTEM

Figure 6: Overview of the security model for the logging channel: a token (yellow) is
issued by the Factory and used by the glidein in the entry node to authenticate itself to
the log server. All the exchanged messages must be encrypted; in the figure symmetric
cryptography is adopted (corresponding keys are of the same color), but public-private
schemes are possible as well. HTCondor natively offers options to transfer files securely.

Given that the lifetime of a glidein never exceeds few days, the tokens should remain
valid for approximately one week, after which they must be renewed. The issuer is
responsible for scheduling a periodic update of its tokens, e.g. setting a cron job up.

4.5.5 Factory token organization

The Factory stores the token in a directory called server-credentials. There you have
a sub-folder for each configured entry, named {entry name}, which in turn contains
a sub-directory tokens. Going deeper, there is one more folder for each recipient
enabled for that entry. Their names are derived from the server URLs, just encoded to
get rid of slashes and globbing characters. Finally, inside these directories, you find
the tokens: if the recipient is set in frontend.xml1, then the name is the Frontend’s
one, otherwise it is equal to default.jwt and is signed by the Factory. For instance:

l s / var / l i b /gwms− f a c t o r y / s e r v e r − c r e d e n t i a l s / e n t r y I T B
FC CE2/ tokens / h t tp s%3A%2F%2Ffermicloud152 . f n a l . gov%0D%0A/

d e f a u l t . jwt voFrontend1 . jwt vofrontend2 . jwt

4.5.6 Copying tokens from Factory to glidein

When a glidein is about to be spawned, the Factory must transfer the correct tokens
to the machine hosting that glidein. Since the token are sensitive files, their trans-

1frontend token generation is not fully supported yet

13

4. NEW LOGGING SYSTEM CONTENTS

mission requires the use of a secure encrypted channel, to prevent them from being
intercepted and stolen by third parties. HTCondor condor submit provides support
for secure file transfers with the directives transfer input files and encrypt input files.
The GlideinWMS Factory just needs to specify a list of files, and they’re automatically
sent to HTCondor workspace in the entry node.
In theory, the selected files should depend on the Frontend (if it specified a cus-
tom token)1, the submit entry and the configured log recipients. Unfortunately, the
GlideinWMS code architecture makes it hard to customize the set as function of the
Frontend and recipients:

+ In GlideinWMS, the list of files is currently generated statically in cgW-
Consts.py at Factory reconfig time, hence there is no way to dynamically
choose what files to send on the basis of the glidein’s Frontend. More-
over, since the Frontend can change the log recipients on its own, with-
out triggering a Factory reconfig, not even these can be used to tailor the
files list. A workaround is to transfer multiple tokens (all those associ-
ated to the entry) inside a statically-named archive to the glidein, with the
latter being responsible for immediately discarding the unneeded ones at
startup (glidein startup.sh). The security still holds, provided that the to-
ken cleanup is correctly executed and that files never leak out of the glidein
workspace (i.e. glideins are isolated).

The tokens are archived as tarfile and zipped (tokens.tgz) before being sent, along
with a descriptor file (url dirs.desc) that helps the glidein figuring out the association
between recipients URLs and the directory names. On the receiving side, the glidein,
which is aware of its Frontend and Factory names, preserves only the tokens that are
strictly necessary to talk with the log servers, and forcefully deletes all the others.

4.5.7 Glidein using the token

From the glidein’s perspective, it is very easy to use the received tokens for authen-
tication. Given the recipient, it just needs to select the corresponding token, include
it in the HTTP message header and send the request. No further action is needed.

4.5.8 Server-side verification

When a log server receives a request, it first checks if the token is present. If not:
end of the story. Next it reads the issuer field, to figure out what secret key should
be selected for verification. The key must be already present in the server, either
manually deposited or automatically exchanged with the issuer using a protocol like
Diffie-Hellman2. Note that the token hasn’t been verified yet, so any information
read should not be really trusted. Anyway, the worse that could happen is an entity
that intercepts a token, strips the signature, replaces the issuer field with its name
and finally re-signs it: this is basically pointless and not harmful at all.

2Automatic key exchange not supported yet

14

CONTENTS 4. NEW LOGGING SYSTEM

The server then verifies the token using the secret associated to the issuer, validates
the other fields (especially the expiration time) and, if everything goes well, the http
request is handled.

4.5.9 Other considerations

The system does not provide explicit countermeasures to DoS (Denial of Service)
attacks; however, these can be mitigated by a log server in many ways, including
firewall rules, Frontend hardware or more sophisticated tools.
The fact that more tokens than necessary are forwarded to a glidein, due to tech-
nical constraints, represents a weak point of the system from two points of view:
security and scalability. Agreed that sensitive data should travel as little as possible,
the system security relies on the correctness of glidein startup.sh discarding the ex-
tra tokens: this functionality deserves particular attention, and should be carefully
tested. Second, sending more tokens implies an increase in the network traffic vol-
ume for the Factory. Given that the average token size is approximately 300 bytes,
the overhead is still negligible until the number of Frontends and recipients remains
fairly limited and bounded to a few dozen. To scale beyond this limit, a solution
could exploit a message queue (Kafka [10], RabbitMQ [11], ...) that receives mes-
sages from the glideins and forwards them to log servers based on application level
information.

4.6 API

The new logging channel is pretty straightforward to use, thanks to a neat API. All
the functions are stored in the file logging utils.source under creation/web base.

4.6.1 Initialization

The log system initialization is a two-phase process. The first step (log init func-
tion) is executed once by glidein startup.sh, and results in the generation of the
tokens, creation of some log folders and duplication of the stdout/err streams. The
second half (log setup), instead, must be executed by every script that wants to
use the logging utilities. Its purpose is just to retrieve some environment variables
from the glidein configuration. Initialization is mandatory to make the other log-
ging primitives work correctly; if skipped, a warning message is generated when
attempting to log or merge events.

l o g i n i t <g l ide in uu id> <r e l a t i v e b a s e p a t h >

g l i d e i n u u i d −> g l ide in ’ s U n i v e r s a l l y Unique ID
r e l a t i v e b a s e p a t h −> path where to c rea t e the logs d i r

l og se tup <g l i d e i n c o n f i g >

g l i d e i n c o n f i g −> name of the g l i d e i n con f i g f i l e

15

5. FUTURE STEPS CONTENTS

4.6.2 Writing

A script can add a new entry to the log by invoking the function log write with
proper arguments. The function may fail in case of configuration problems.

l o g i n i t <invoker> <type> <content /path> <s e v e r i t y >

invoker −> name of the s c r i p t tha t i s logg ing
type −> ” t e x t ” (s t r i n g) or ” f i l e ”
content / path −> s t r i n g message or f i l e body
s e v e r i t y −> s e v e r i t y l e v e l of the logged informat ion

4.6.3 Merging

To merge the shards, simply call log coalesce shards without arguments. Any-
way, is generally redundant to do so, since this function is also invoked inside
send logs to remote (see below). The operation may fail in case of configuration
problems.

l o g c o a l e s c e s h a r d s

4.6.4 Remote forwarding

Logs can be forwarded to the configured remote servers by invoking the function
send logs to remote. At the beginning, it will call log coalesce shards too. The
operation may fail in case of configuration problems.

send logs to remote

5 Future steps

5.1 Frontend token generation

The Frontend should be allowed to set the attribute LOG RECIPIENTS CLIENT in
frontend.xml, which extends the list of log servers with new elements. In other
words, if the Frontend defines LOG RECIPIENTS CLIENT, all the glideins related to
that Frontend will send logs to those servers too, authenticating with the tokens pro-
vided (and signed) by the Frontend: an additional attribute, LOG CLIENT TOKENS,
should contain the file names of such tokens. Of course, LOG RECIPIENTS and
LOG TOKENS must be of the same length. In case of overlapping entries between
Factory and Frontend (i.e. the same log server is specified by both), the Frontend’s
one is preferred and overrides the Factory’s attribute.

16

CONTENTS 6. CONCLUSIONS

5.2 Token renewal

Tokens remain valid only for a limited period, after which they expire. This behavior
is motivated by security considerations: if a token is stolen, the attacker’s bad actions
are bounded to a finite interval of time. On the other side, it also means that tokens
must be periodically renewed or the system will eventually stop working. The most
straightforward to do so would be a cron job on the issuer side (Factory). which
executes with a frequency that is neither too low (don’t let tokens expire) nor too
high (avoid excessive overhead). In any case, the period must comply with the
following formula:

Ttoken > Trenewal + Tglidein

where Ttoken is the token validity interval when issued, Trenewal is the renewal period
and Tglidein is the maximum expected lifespan for a glidein. It ensures that a glidein
always receives a token that will be valid for the whole of its life (from spawn to
death), and will not expire in the meanwhile.

6 Conclusions

The new logging channel was designed and developed in two months and, although
some features are only sketches, most of the mechanisms have been tested with
success under different scenarios. The system is not ready for production yet, since
a robust server-side log infrastructure is needed too, but the proof of concept is
already there. From a personal point of view, it was an outstanding opportunity to
work in a professional team, get involved in the workflow and decision processes,
learn new technologies and, last but not least, visit another country and enjoy its
culture.

7 Acknowledgements

This work could not be possible without the help of my colleagues and other people.
I want to especially thank my supervisor Marco Mambelli, who constantly guided me
with invaluable dedication; Lorena Lobato Pardavila, whose enthusiasm and techni-
cal tips have greatly benefited my internship; Dennis Box, Vito Di Benedetto, Marco
Mascheroni, Jeff Dost, who also contributed to my work with their expertise; Gior-
gio Bellettini, Simone Donati, Emanuela Barzi, for their outstanding effort organiz-
ing such a good quality internship program every year; Kappatolia Sherman, Valery
Stanley, Rosa P Foote, who assisted me in obtaining a VISA and accommodation; the
other italian interns, with whom I have shared many beautiful moments; Fermilab
and my home institution, Sant’Anna School of Advanced Studies, which gave me
funds to allow a positive stay in the US for two months.

17

8. APPENDICES CONTENTS

8 Appendices

This sections collects a couple of other activities that I carried out in GlideinWMS,
which are not strictly related to the main task (log channel), but nevertheless worth
of mention and description.

Appendix A Self-extracting scripts

Some utility functions must be shared between the bash scripts. There are two
typical approaches to do so:

• write the shared code in a standalone file, then the other scripts will source it

– Pro: clean organization

– Cons: functions available only after moving the files to the grid nodes;
slightly increased transfer overhead

• Heredoc: put the shared code inside a string; the main script, on execution,
writes that string to a file that can be sourced by the other scripts requiring it

– Pro: constant number of files

– Cons: messy organization; need to escape special characters inside the
string; editor syntax highlighting spoiled; hard to test

There exists another smart approach which combines the best of the two worlds: self
extracting scripts. The idea is to develop the utility code in standalone files, but in-
stead of directly transferring them they are archived, compressed and concatenated
to the main script; only the latter is actually sent. On the receiving side, as soon as
the main script executes, it automatically strips the utility section from its own file,
unzips it and finally shares the contained code by writing it into new files.

Appendix B ShellCheck CI

Testing is an important step in the software lifecycle: it ensures that the program
works as expected before the code is deployed to production servers. Depending on
the specific application, software bugs may cause a component or the entire system
to fail, with consequences ranging from negligible up to catastrophic. Therefore
it is very critical to have a solid testing infrastructure in a large project. As such,
GlideinWMS exploits Jenkins, a server for continuous integration that allows the
periodic execution of automated tests.
Static analysis is a class of testing techniques that inspect the source code looking
for potential faults, yet without running it. One of these tools is ShellCheck, a linter
for bash scripts, that is an utility which analyzes the code to flag programming er-
rors, bugs, stylistic errors, and suspicious constructs. I have integrated ShellCheck
verification of GlideinWMS bash scripts in Jenkins CI, so that we can monitor better

18

REFERENCES REFERENCES

the presence (and number) of issues in the project now, and possibly improve the
overall quality of the code.

Figure 7: An example of warning messages generated by ShellCheck.

References

[1] TMC Abbott et al. “The Dark Energy Survey: Data Release 1”. In: Astrophysical
Journal: Supplement Series 239 (Nov. 2018).

[2] Tim Dierks and Eric Rescorla. “RFC 5246-the transport layer security (TLS)
protocol version 1.2”. In: Internet Engineering Task Force (2008).

[3] D Eastlake III and T Hansen. “RFC 4634-US Secure Hash Algorithms (SHA
and HMAC-SHA)”. In: Motorola Labs and AT &T Labs (2006).

[4] Lyndon R Evans. The Large Hadron Collider: a marvel of technology. EPFL
Press, 2009.

[5] Alan Freier, Philip Karlton, and Paul Kocher. “The secure sockets layer (SSL)
protocol version 3.0”. In: (2011).

[6] Wes Gohn. “Data Acquisition for the New Muon g-2 Experiment at Fermilab”.
In: Journal of Physics: Conference Series 664 (June 2015). DOI: 10.1088/1742-
6596/664/8/082014.

[7] IBM Spectrum LSF. https : / / www . ibm . com / us - en / marketplace / hpc -

workload-management.

[8] M Jones, J Bradley, and N Sakimura. “Rfc 7519: Json web token (jwt)”. In:
Date of retrieval 5 (2015), p. 2017.

[9] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. “RFC 2104: HMAC: Keyed-
hashing for message authentication”. In: Internet Engineering Task Force 252
(1997).

[10] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging
system for log processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[11] RabbitMQ. https://www.rabbitmq.com.

[12] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. “Cryptographic com-
munications system and method”. In: US Patent 4405829 (1983).

[13] Todd Tannenbaum et al. “Condor – A Distributed Job Scheduler”. In: Beowulf
Cluster Computing with Linux. Ed. by Thomas Sterling. MIT Press, Oct. 2001.

19

https://doi.org/10.1088/1742-6596/664/8/082014
https://doi.org/10.1088/1742-6596/664/8/082014
https://www.ibm.com/us-en/marketplace/hpc-workload-management
https://www.ibm.com/us-en/marketplace/hpc-workload-management
https://www.rabbitmq.com

REFERENCES REFERENCES

[14] TORQUE Resource Manager. http://www.adaptivecomputing.com/products/
torque/. Accessed: 2010-09-30.

[15] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux util-
ity for resource management”. In: Workshop on Job Scheduling Strategies for
Parallel Processing. Springer. 2003, pp. 44–60.

20

http://www.adaptivecomputing.com/products/torque/
http://www.adaptivecomputing.com/products/torque/

	1 Abstract
	2 Scientific computing
	2.1 HTC/HPC
	2.2 HTCondor
	2.3 GlideinWMS

	3 GlideinWMS Monitoring
	3.1 Overview
	3.2 Current issues

	4 New logging system
	4.1 Overview
	4.2 Format
	4.3 Concurrency
	4.4 Log forwarding
	4.5 Security
	4.5.1 Assumptions
	4.5.2 Technologies
	4.5.3 Security model
	4.5.4 Token structure
	4.5.5 Factory token organization
	4.5.6 Copying tokens from Factory to glidein
	4.5.7 Glidein using the token
	4.5.8 Server-side verification
	4.5.9 Other considerations

	4.6 API
	4.6.1 Initialization
	4.6.2 Writing
	4.6.3 Merging
	4.6.4 Remote forwarding

	5 Future steps
	5.1 Frontend token generation
	5.2 Token renewal

	6 Conclusions
	7 Acknowledgements
	8 Appendices
	A Self-extracting scripts
	B ShellCheck CI

