
SQMS Summer Internship Report

Optimising HEP Simulations on 3D Architecture:

Primitive Gates for BT

Andrea Maestri1,3, Hank Lamm2, Doga Kurkcuoglu1,4, and Judah Unmuth-Yockey2

1Northwestern University, Department of Physics and Astronomy, Center for
Applied Physics and Superconducting Technology

2Theory Division, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
3University of Amsterdam

4Fermilab Quantum Institute, Fermi National Accelerator Laboratory, Batavia, IL
60510, USA

October 2022

Abstract

In this report, the first attempt for an alternative approach for the simulation of the
non-abelian groupBT has been done. First, we analysed why SNAP and Displacement
decomposition is not feasible for this problem with the current technology, and then
we explored a new approach for the optimisation of the pulses. In particular, we
studied how the expansion of the pulses in Chebyshev Polynomials could affect the
optimisation process. Even if the study is not conclusive, we believe that it might be
worth continuing to study this approach in the future, in order to be able to efficiently
implement quantum circuits on computers.
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1 Introduction

Quantum Information Science makes use of quantum mechanics to realise algorithms and
operations that are intractable by standard computers. Theoretical and experimental
investigations in high-energy physics is a prime driver for pushing the frontiers of compu-
tation paradigms and computing power. In particular, simulating the dynamics of lattice
field theories offers clear potential for quantum advantage [3].
This work starts by analysing the implementation of the simulation of the non-abelian
group BT, a subgroup of SU(2). Using pulse optimisation, we aim to improve on the im-
plementation of the quantum algorithms which utilise the usual SNAP and Displacement
decomposition [1]. In particular, the aim of this work is to find if, using pulse optimisation,
it is possible to decrease the amount of time required for the simulation of the theoretical
operations on the group and therefore, if it is possible to approach the simulation of groups
like BT with the current technologies.
While the theory for lattice field theory or intricacies of BT is not treated in this report, a
brief description of the quantum algorithms used to simulate this theory, and why we are
interested in pulse optimisation, is given in the following sections. For a more in-depth
theoretical analysis of the HEP problem, we always refer to [8].
There are multiple approaches to gate implementation. However, on current quantum
computers, with the current decoherence times, most problems are still intractable. In
particular, in the simulation of BT, the number of the SNAP and Displacement gates
required for a single quantum circuit is far beyond what can be implemented [1].
Finding a general way to do pulse optimisation can be beneficial not only for this problem,
but in principle it can reduce the cost of implementing any quantum algorithm. Moreover,
for systems whose final state we know, the development of the quantum algorithm can
be skipped and the gate can be found directly by the optimisation algorithm when using
pulse optimisation.
The starting point for this study was the simulation of the pulses using the python library
Qutip[10]. However, as the dimension of the gate corresponded to a 48×48 matrix in our
study case, this approach resulted infeasible and optimal pulses were impossible to find
running the simulations on a laptop1. Different approaches spanned from using binary
pulses [6] to quantum reservoir computing [7]. Other approaches include a combination
of different optimisation algorithms, such as genetic and gradient descent algorithms [13].
While the first two are not meant to be tested by us, the last two are algorithms that are
future directions of this paper.
All of these approaches have something in common: the single pulse to optimise corre-
sponds to a time series u⃗ of dimension Nsteps, where Nsteps is the total number of time
steps required by the optimisation, a parameter that has to be tuned depending on the
problem. In this notation, each value of the vector corresponds to the value of the pulse
at time tk with k ∈ [0, Nsteps]. The values of the pulses are completely uncorrelated, and
therefore the final optimisation process could correspond to an amplitude that is difficult
to implement on an actual computer.
Moreover, for high dimensional problems such as the simulation of BT, a large number
of time steps is required to reproduce a gate with high fidelity, resulting in thousands of
parameters to optimise.
In the current report, we explore a different approach, consisting of finding an analytical
expression of the pulses by expanding them into Chebyshev polynomials. In section 2, a

1the specs of the laptop are: Apple M1 chip, 8-core CPU with 4 performance cores and 4 efficiency
cores
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brief introduction to the HEP problem will be given, as well as the current implementa-
tion approach. In section 3 we give an overview of the literature on pulse optimisation
and propose our new approach. In the remaining sections, we discuss the advantages and
drawbacks of this approach, as well as suggesting future steps to solve this problem.

4



2 Simulation of BT

The increasing complexity of simulating quantum field theories naturally brings up the
possible advantage of simulations on quantum computers. In particular, quantum com-
puters seems to fit extremely well the simulation of High Energy Physics problems. Easier
said than done, performing such a simulation has multiple requirements and difficulties.
In this section, we will show what is the nature of the problem that we are focusing on
and what are the complications that emerge.
Time evolution on quantum computers requires efficient implementation of the unitary
operator U(t) = e−iHt. Various approaches exist, but all of them require implementing
the key group theoretic operations as quantum circuits in the case of lattice gauge theories
[9]. Moreover, a digitisation method needs to be defined. One promising method is the
discrete group approximation [4] which reduces resources substantially. For nonabelian
gauge groups, we only have a few subgroups. SU(2) has 3 and in this report, we are
going to focus on BT which has proven to be a good trade-off between computational
complexity and accuracy compared to SU(2).

2.1 Primitive gates for BT

Without discussing in depth the theory behind BT that can be found in [8], it has to
be said that this theory requires nonabelian bosonic degrees of freedom and that each of
those bosons needs 5 qubits, or alternatively for a 3D architecture, a quicosotetrit (qudit
with d = 24), that is the alternative on which we are going to focus on.
The simulation of lattice gauge theories requires the definition of a register where one can
store the state of a bosonic link variable which we call a G−register. In order to construct
the −register in terms of integers, it is necessary to construct a mapping between the 24
elements of the group and the integers [0, 23]. A clean way to obtain this is to write every
element of BT as an ordered product of four generators2 with exponents written in terms
of the binary variables m,n, o, p, q:

g = (−1)minjolp+2q, (1)

with

l = −1

2
(1 + i+ j+ k) (2)

and i, j, k are the unit quaternions which in the 2d irreducible representation (irrep)
correspond to Pauli matrices. With the construction of Eq. (1), the −register is given by
a binary encoding of the qubits with the ordering |qponm⟩. This same mapping can be
utilized for . For example, using η = 1 + i one element in the real 2d irrep is

1

2

(
η η∗

−η η∗

)
= (−1)1i1j1l0+2×1 → |10111⟩ = |23⟩ (3)

For general gauge groups, it is possible to define any quantum circuit with sets of primitive
gates[11]. One choice of primitive gates is: inversion L−1, multiplication L×, trace LTr

and Fourier transform LF . The inversion gate, L−1, is a single register gate which takes
a group element to its inverse:

L−1 |g⟩ = |g−1⟩ .
2The minimal set of generators for is two, but we have been unable to find an ordered product

with less than three. The choice of three generators is the same as the one with four generators where
(−1)min → i2m+n. Nevertheless, the qubit costs cannot go below the current formulation’s value of
⌈log2(24)⌉ = 5.
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The group multiplication gate acts on two quicosotetrits, it takes the target and changes
the state to the left product with the control:

L× |g⟩ |h⟩ = |g⟩ |gh⟩ .

The trace of group elements:
LTr |g⟩ = eiθReTrg |g⟩ .

And finally the Fourier transform:

LF

∑
g∈G

f(g) |g⟩ =
∑
ρ∈Ĝ

f̂(ρ)ij |g⟩ |ρ, i, j⟩ ,

where f̂ denotes the Fourier transform of f3. As will be seen in the following sections, the
cost of BT is still far from what can be simulated on current quantum computers, and as
mentioned before, the goal of this report was to study if this cost can be reduced. This led
to the analysis of only the multiplication gate and the inversion gate which are, in order,
the simplest non-trivial gate, and the most expensive.

Figure 1: A quicosotetrit implementation of L−1 using the X(a,b) gate.

Figure 2: A quicosotetrit implementation of L×. The subscript gi indicates the i
th element

of the group.

2.2 Cost analysis for SNAP and Displacement decomposition

One possible approach for the implementation of the primitive gates is to decompose each
elementary operation into a set of gates which are well implemented on the computer. In
particular, for a qudit, it can be shown that SNAP and Displacement gates are universal
(i.e. each elementary operation can be reproduced as a combination of them). SNAP
gates can arbitrarily phase the qudit states:

S(θ⃗) =
N−1∑
a=0

|a⟩ ⟨a| eiθa

where the sum is over the computational basis states a ∈ [0, N − 1] of an N -state qudit
and θ⃗ = {θ0, θ1, ..., θN−1} are a set of tunable parameters analogous to a rotation of θ
around the z-axis in the block sphere for the qubit.
The Displacement gate coherently changes the cavity’s photon number. In terms of Fock-
operators a, a†, it is

D(α) = eiα(a
†+a).

3See [8] for better theoretical explanation of the gates
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Now, in order to obtain a universal set of gates, we require an entangling gate. The one
used in [8] is the controlled SNAP which phases a target qudit based on if a second qudit
is in a state |α⟩. With the current algorithms developed at SQMS, it is possible to find
the parameters for these two gates efficiently. However, the problem with this approach
consists in the number of gates required to implement one trotter step.
As we can see from table 1, the number of gates to simulate a single trotter step for
dimension d is high. Moreover, this cost refers to only one link and at least 4 links are
needed4 to simulate the dynamics of the group[8]. This pushed us to explore different
ways of implementing the gates. The natural alternative to SNAP and Displacement is
pulse optimisation which will be described in the next sections.

Gate cS(θ⃗) cS(θ⃗) cD(α)

L−1 0 24 25
L× 23 575 575
LTr 0 1 0
LF 0 24 25

e−iHIδt 598d− 506 15215.5d− 12771.5 15225d− 12775

Table 1: SNAP and Displacement decomposition’s cost analysis per link where d represents
the dimension.

3 Pulse Optimisation

The other possible approach for the synthesis of the gates is pulse optimisation. This
approach consists of the application of control hamiltonians with an intensity that is
modulated by pulses that vary accordingly to the gate that has to be implemented

H = H0 +
∑
i

ui(t)Hi. (4)

The drift hamiltonian H0 (i.e. a hamiltonian that does not depend on time and it’s
constant for the system) is the one that doesn’t vary with time. It can be the Jaynes-
Cummings hamiltonian or a different one depending on how the qubit and the cavity are
coupled5. On the other hand, the control hamiltonians usually are a combination of the
sigma matrices and a combination of the creation and annihilation operators. In this
report, different operators will be used, but they will be always specified depending on the
problem.
Once the hamiltonian of the problem is defined, in order to implement the gate, the
evolution operator is constructed as follow:

UT =
N∏
k=0

e−iH(tk)δt (5)

in order to construct the adiabatic evolution of the system. The goal of the pulse op-
timisation, given an arbitrary gate Xtar, is to find an optimal value for the pulses such

44 is needed at minimum, but realistically we need at least d(4)d of them where d represents the
dimension

5This can be extended to other types of systems, for example to non-transom qubit. The evolution of
those systems is of course governed by a different hamiltonian
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that
UT ≈ Xtar.

One possible way to do that is to minimise the following infidelity function

f̂ = 1− |Tr
(
U †
TXtar

)
|. (6)

The difference in the various approaches for pulse optimisation is in how the amplitudes
are defined and in the possible optimisation algorithms. The usual approach consists of the
utilisation of the LBFGS [12] algorithm for the optimisation and on a piece-wise expansion
of the pulses.

3.1 Qutip’s pulse optimisation

Qutip is a library developed for multiple purposes for quantum computing [10]. Its utili-
sations span from the solution of Schrödinger equations to pulse optimisation for the gates
synthesis. In this part of the report, we are going to explore briefly how Qutip performed
on the problem we are interested in, and why we decided to explore new optimisation
strategies.
In this optimisation process, the drift hamiltonian used was the Jaynes-Cummings hamil-
tonian. After a change of variables it can be written as

H0 = −2πa†aσz,

while the control hamiltonians were a linear combination of a†, a, σ+, σ−. The sigma
matrices act on the qubit system while the creation and annihilation operator on the
photons states.

3.1.1 Trace Gate

The first gate that we were interested in optimising was the trace gate. However, this
gate is already optimised using SNAP and Displacement decomposition. In fact, it can be
written as only one SNAP gate. This led us to focus more on the remaining ones.

3.1.2 Inversion Gate

The second gate that was tried, and the last one using Qutip, was the Inversion gate. We
ran the pulse optimisation algorithm with different combinations of the hyperparameters
in order to get the best possible result in a reasonable time.
The best combination of parameters resulted to be6:

• pulses type: sinusoidal,

• pulse duration: 1ms,

• time slots: 5000,

• maximum number of iterations: 10000,

• maximum time of execution: 8h.
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Figure 3: Inversion gate found using Qutip’s pulse optimisation.

With this combination, the result got from the optimisation was a gate implemented with
an infidelity f̂ = 0.66. The resulting matrix is depicted in fig 3.
It is worth mentioning that whatever the infidelity is, it is unfortunately not the one that is
going to be obtained by the machine. On top of the error due to the optimisation process,
there is the error due to the actual physical implementation of the pulses, and the accuracy
managed to achieve in the laboratory. Putting everything together, the result obtained is
not something we should even try to implement on a quantum computer. Moreover, since
the parameter tuning has been done already, the final value for the infidelity is not easy
to improve 7.
This pushed us to the exploration of new methods to handle this problem. In literature,
there are various approaches that are well documented, however, due to the high dimen-
sionality of our problem, we thought that the number of parameters to optimise required
would have been too big and that such approaches would not be scalable for future prob-
lems. This led to the idea of expanding the pulses into Chebyshev polynomials as it will
be described in the next section.

3.2 Pulse optimisation using Chebyshev expansion

The main disadvantage of using a piecewise approach for the control amplitudes is that for
each control hamiltonian, a specific value of the pulse has to be found for each time step.
For the optimisation of a qubit gate, this is not a problem since with a number of steps
that is between 10 and 100, it is always possible to find an optimal gate. On the contrary,
for the problem we are focusing on, the number of time steps required for the optimisation
is obviously higher due to the higher complexity of the final gate. From multiple runs for
simplified problems (Fock space of size 8 for example), it was noticed that at least 1000
steps are required to obtain an infidelity of 10−3. This approach is therefore not feasible
for the simulation of BT since, considering the fact that we have 4 control hamiltonians
for this problem, we will have a number of parameters that is somewhere between 103 and
104.

6All the simulations in this report were running on a laptop with the following specs: Apple M1 chip
2020 8-core CPU with 4 performance cores and 4 efficiency cores

7If it is possible at all
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However, we found a way to reduce the number of parameters. The idea that we had was
an expansion of the pulses in order to find an analytical expression of them. The choice
was between a Chebyshev and a Fourier expansion. The first was preferred due to the
smaller error with the name number of terms in the sum.
More precisely, given the hamiltonian in equation 4, we wrote the pulses in the following
form:

ui(t) =
K∑
k=0

ckTk(t),

where the {ck} are the parameters to optimise and the {Tk} are the Chebyshev polynomials
[2] of the first kind defined as

Tk(cosθ) = cos(kθ),

and the first terms are shown in fig 4. With such an approximation, it can be shown that

Figure 4: Plot of the first 4 Chebyshev polynomials.

knowing the coefficients exactly, the error in approximating a function follows this formula
[2]

E(x) = |f(x)− P (x)| ≤ 1

2K(k + 1)!
max

−1≤t≤1
|f (n+1)(t)|.

Therefore, already with 100 parameters, the error in the expansion would be smaller than
what we will ever need for our problems.
After expanding the pulses, the resulting propagator that needs to be optimised is the
following:

UT =

N∏
k=0

e−i(H0+
∑

i(
∑K

k=0 ckTk(tk))Hi)δt.

Given this, the parameters that have to be optimised are the elements of a matrix of size
N ×K where K is the number of Chebyshev polynomials and N is the number of control
hamiltonians. It is worth noticing that the domain for the Chebyshev polynomials goes
from -1 to 1. However, this is not a problem since we can find the form of the pulses
and then just rescale them to the time interval that we need. The time interval can be
shortened such that the synthesis of the gate that we need can be implemented before the
decoherence time of the qubit.
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3.3 Optimisation algorithms

Multiple optimisation algorithms were tested in order to run the simulation as fast as
we could. Knowing that for the SNAP and Displacement decomposition the Stochastic
Gradient Descent worked very well for the same HEP problem, we started experimenting
with this type of algorithm. The first algorithm that was tried was actually the Stochastic
Gradient Descent Algorithm whose scheme is depicted in alg. 1.

Algorithm 1 Stochastic Gradient Descent algorithm.

it = 0
x⃗ = rand(n)
while it ≤ N do

grad = ∆f
x⃗ = x⃗− α · grad
it = it+ 1

end while

With this algorithm, preliminary results were produced. In particular, after implementing
the optimisation algorithm and the calculation of the cost function in Julia [5], it was
tested if the expansion in Chebyshev polynomials could produce simple gates such as the
Hadamard gate.
In particular, setting the drift hamiltonian H0 = σz and the control hamiltonian H1 = σx,
it was found that expanding the control pulse to 5 terms, we reached an infidelity of
f̂ ≈ 10−16. Such low infidelity is not the only benefit that we found from this approach.
Indeed, the optimisation algorithm resulted to be between 10 and 100 faster than Qutip’s
pulse optimisation (which performed equivalently in terms of infidelity). In addition to
this, the pulses found using the Chebyshev expansion were smoother than the one ob-
tained with Qutip 5, which is an important feature when we try to actually implement
the pulses in the laboratory because that will allow us to change the intensity of the fields
less rapidly.

Figure 5: Pulses for the Hadamard gate using Chebyshev expansion for the optimisation
of the pulses.

Since the performance of the algorithm seemed promising, we tried to perform the op-
timisation process for a Fock space of size 5 reproducing a simple X-gate, resulting in
a matrix of dimension 10 × 10. For this system, the Hamiltonian was the same as the
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one used in Qutip, the number of terms in the Chebyshev expansion was 200 for each
control hamiltonian and the number of time steps was 300. The algorithm was run with
the following set of parameters: Nit = 5000 and α = 0.01. As it is possible to see from

Figure 6: Infidelity vs Iteration number for the stochastic gradient descent algorithm.

fig 6, the cost function rapidly decreased in the first iterations, and slowly got stuck in a
local minimum. The final infidelity achieved resulted in f̂ = 0.12, moreover, the number
of iterations required to reach such a result seemed to indicate the fact that the landscape
of the cost function is more complicated than what we were expecting, and that therefore
a gradient descent methods might not be perfect for the optimisation process.
In order to give more stochasticity to the process, we thought of combining the stochas-
tic gradient descent and the simulated annealing algorithms. The idea was to give the
algorithm the possibility of getting out of a local minimum once there with a certain
probability. The algorithm is the one described in alg 2. However, we barely tested this
approach because we preferred to try different algorithms as well. As it is possible to see
in fig 7, for only 1000 iterations, the final infidelity was not promising, in addition to this,
we can see that at the beginning the infidelity remained constant, due to the high temper-
ature of the simulated annealing algorithm, and at the end started decreasing, probably
due to the fact that at that point the only algorithm that was giving an impact to the
optimisation process was the stochastic gradient descent.
Putting everything together, we decided to move on from this algorithm, although keeping
in mind that with a finer tuning of the parameters or a different decreasing scheme for the
temperature, it could have given better results.
After testing with these 2 algorithms, we tried the more common LBFGS algorithm whose
description can be found in [12]. This algorithm is the one used by Qutip and it was al-
ready implemented in Julia in the Optim library. Before running the optimisation for the
full problem, we tested different combinations of the parameters in order to gain more
knowledge about the problem. First, we started with a target infidelity of

f̂tar = 10−3.

Then, after fixing the size of the Fock space, we tested how many iterations and how long
did it take for the algorithm to reach that value of infidelity, changing the number of time
steps for each simulation.
We started from a Fock space of size 2 to 6, and we tested 400, 600 and 1000 time
steps. In all the simulations the hamiltonian was the same as the one used for the Qutip’s
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Algorithm 2 Stochastic Gradient Descent algorithm combined with simulated annealing.

it = 0
x⃗ = rand(n)
while it ≤ N do

grad = ∇f
x⃗ = x⃗− α · grad
x⃗′ = x⃗+ β · rand(n) ▷ β decreases with the number of iterations

p = e
f̂(x⃗)−f̂(x⃗′)

kT

if f̂(x⃗′) ≤ f̂(x⃗) then
x⃗′ = x⃗

else if rand ≤ p then
x⃗′ = x⃗

end if
decrease T , decrease β
it = it+ 1

end while

Figure 7: Infidelity vs Iteration number for the stochastic gradient descent + simulated
annealing algorithm.

optimisation, and the number of terms in the Chebyshev expansion was 200 for each
control hamiltonian. As it is possible to see in table 2, the optimisation algorithm seems
to work better for a smaller number of time steps. However, as we noticed from the
pulse optimisation in Qutip, a small number of time steps that corresponds to fewer
pulses applied to the system might not be enough to reach an optimal result. Therefore
a balance needs to be found for this parameter, especially for higher dimensional systems
like the simulation of BT.
In the next sections, we will embark on a discussion about the increasing complexity of
the optimisation process for a bigger number of time steps.

4 Results

Since the LBFGS algorithm gave good results for certain values of the Nsteps, we decided to
run the full optimisation of the inversion gate using that algorithm. The goal was to see if
it was possible to obtain a better result than Qutip pulse optimisation, and we will see that
this is actually possible. In particular, running the optimisation for Nsteps = 100, 200, 300,
we got the following results with a computation time of 4hrs for each simulation:
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Nsteps = 400 Nsteps = 600 Nsteps = 1000

dF.S. = 2 (4′, 86, ) (4′, 27, ) (28′, 26, )
dF.S. = 3 (4′, 68, ) (4′, 48, ) (9′, 69, )
dF.S. = 4 (13′, 179, ) (19′, 207, ) (33′, 210, )
dF.S. = 5 (34′, 323, ) (62′, 392, ) (1h, 234, 0.006)
dF.S. = 6 (45′, 322, ) (3h, 834, ) (1h, 181, 0.07)

Table 2: Results for the optimisation process for different dimensions of the Fock space
and for different values of the Number of time steps. The elements in the brackets in each
term of the table are in order: computation time, the number of cost function calls, and
whether the target infidelity was reached or not.

Nsteps = 100 Nsteps = 200 Nsteps = 300

f̂ 0.65 0.55 0.78

Table 3: Results for the optimisation process for the inversion gate for different values of
the number of time steps.

Even if the results are very far from being useful for the synthesis of the gates, we still got
an improvement over Qutip’s optimisation. The resulting amplitudes for the best result
are shown in fig 8.

Figure 8: Pulses obtained from Chebyshev decomposition optimisation, using the LBFGS
algorithm and Nsteps = 200

5 Discussion

Even if the results obtained for the inversion gate resulted to be better than what we
previously had using Qutip, we are still far from having a good optimisation algorithm.
In this section, we are now going to try to provide an explanation of why, even reducing
the number of parameters drastically, the optimisation process was not much better than
what is usually in the literature.
First, it is worth mentioning that, for gradient descent approaches, the gradient has of
course to be computed. If the number of parameters is small, then this is not a problem,
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but in this case, where we had N ∈ [400, 800], the cost function has to be called N times for
each iteration (if we are not computing the Hessian matrix). This reason alone is already
a hint in the utilisation of algorithms that are gradient-free such as simulated annealing
or genetic algorithms. Moreover, looking at the expression of the operator that we wanted
to optimise:

UT =
N∏
k=0

e−i(H0+
∑

i(
∑K

k=0 ckTk(tk))Hi)δt,

we can immediately see that, compared to a piecewise approach, where each parameter
counts only for one time step, here, all of them are in every term of the product. This makes
the infidelity function way more complicated to optimise. Putting everything together,
using gradient descent approaches for such a problem, might not only be slow but also
will probably always get stuck in a local minimum. Lastly, we know that finding optimal
pulses is expensive, however, we restricted ourselves to a laptop to find fast algorithms.
An obvious continuation of what has been done is using a workstation or a cluster to do
more intense calculations.

6 Conclusion and Future work

The aim of this report was initially to compare the difference between SNAP and Dis-
placement decomposition and Pulse optimisation for the simulation of HEP problems,
specifically the simulation of the non-abelian group BT. However, since this comparison
was meant to be done using Qutip for the pulse optimisation, it was found that the op-
timisation process resulted to be very slow, and gave infidelity values far from the ones
given by the SNAP and Displacement decomposition. Therefore we decided to move the
goal of this work from a comparison between methods, to the implementation of a new
one.
Initially, we studied multiple approaches that are well known in the literature, however,
in order to reuse part of the code written in Julia for the SNAP and Displacement decom-
position we had the idea of expanding the pulses into Chebyshev polynomials.
As we have seen in the past sections, reducing the number of parameters to be optimised
does not immediately lead to the solution of the problem, but some improvements were
found anyway compared to the usual approaches applied to our scenario.
Now, knowing that the work is far from being conclusive, we still want to point out some
conclusions that have been drawn. The pros of this approach are:

• It will in principle give pulses that are smoother than random pulses generated with
a library like Qutip and this will lead to an easier implementation on the machine.

• The number of parameters was drastically reduced, and with this approach, it will
remain in the same order of magnitude no matter the problem we are going to face.

• The pulses can be made shorter, and this will open to the simulation of problems
that are impossible to simulate right now.

However, there are drawbacks that need to be faced. For example, the very complicated
landscape of the cost function when the number of time steps is increased, and the fact
that with such a landscape a gradient descent algorithm will probably get stuck in a local
minimum every time.
In future work, it might be worth exploring different approaches that are different from
the one used in this paper. The idea that we had, was to further explore hybrid algorithms
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such as the stochastic gradient descent method combined with the simulated annealing, as
well as developing genetic algorithms to explore a wider part of the landscape instead of
getting stuck in a local minimum immediately. In conclusion, we believe that this problem
is worth studying further. The reason why is that, regardless of the level of technology
developed for quantum computers, being able to implement the gates with high accuracy
and within a shorter time, will give us the possibility of implementing more operations
before the decoherence of the qubit, as well as possibly go from one state to another one,
without developing the quantum algorithm that lies behind this operation.
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