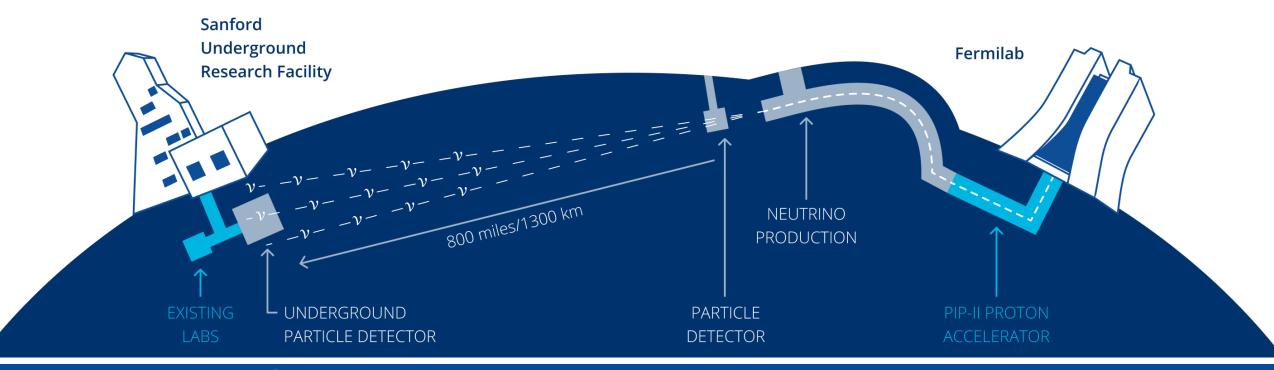
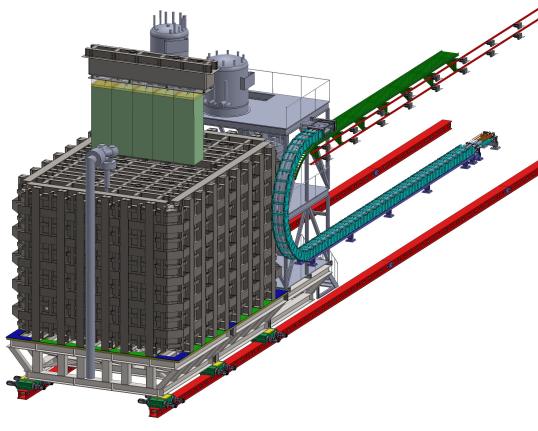
Fermilab

DUNE ND-LAr 2x2 Demonstrator Tests


Vanessa Cerrone Supervisors: Antonio Ereditato, Ting Miao Co-supervisor: Geoff Savage

Italian Summer Student Program 2022 Final Term Review


The DUNE experiment

- Leading-edge, international neutrino experiment [1]
- Far Detector (FD): ≈ 1.5 km underground at the Sanford Underground Research Facility (SURF) in South Dakota, 1300 km from Fermilab
- Near Detector (ND): 574 m from the target, at Fermilab

Liquid Argon TPC - ND-LAr

- ArgonCube technology [2]
- 35 LAr TPC modules in a common bath of liquid argon
- Active mass \approx 150 t, 50 t fiducial
- Detector modularization
 - Improved drift field stability
 - Reduced high voltage and LAr purity requirements
- Pixelated charge readout:
 - 3D imaging of particles interactions
- Large area dielectric photon detection system:
 - Fast timing information from scintillation light

ND-LAr detector

ArgonCube 2x2 Demonstrator

- Ton-scale LAr TPC detector \rightarrow verify technical readiness of the ND-LAr TPC module design
- Four LAr TPC modules in a 2 x 2 grid and a shared high-purity LAr bath
- To be operated in the NuMI beamline → First
 DUNE detector to take neutrino events

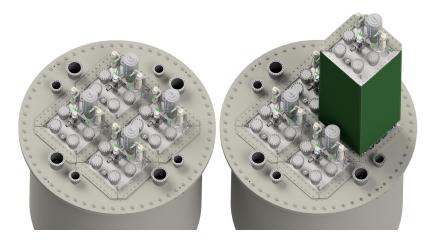
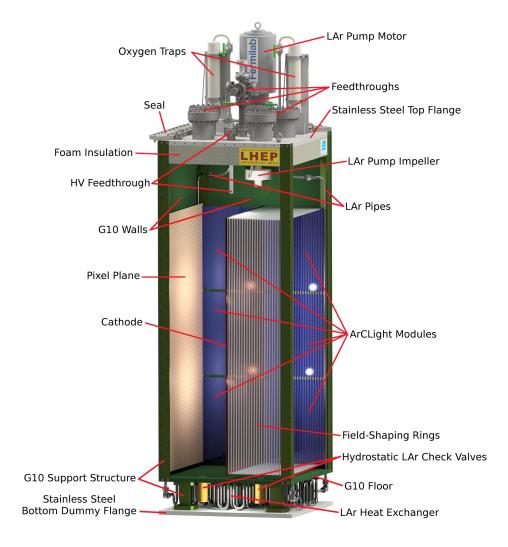
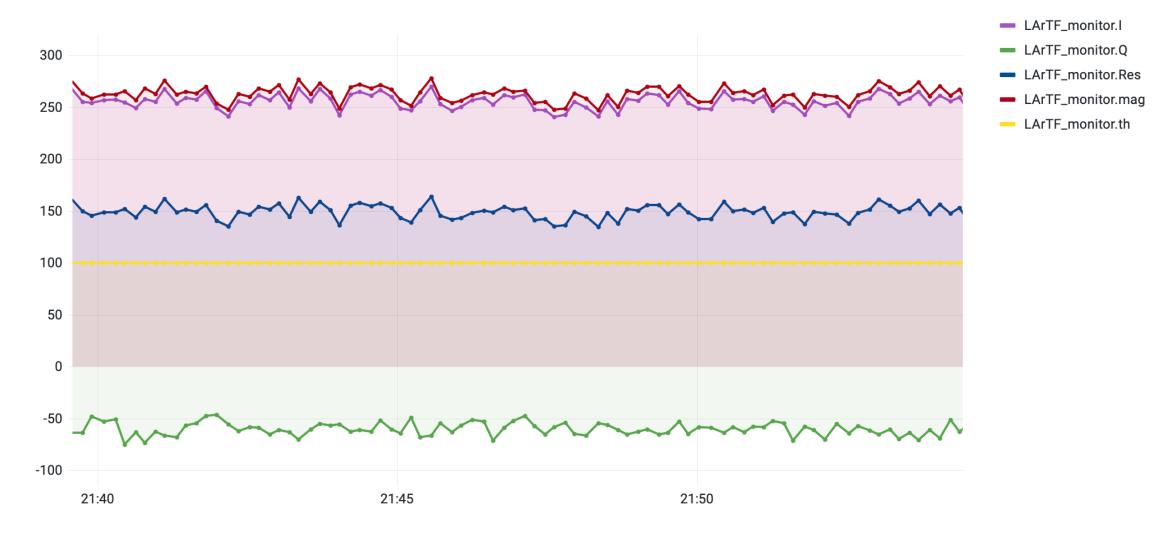



Illustration of the ArgonCube 2x2 Demonstrator module

Cutaway drawing of ArgonCube module for the 2x2 Demonstrator

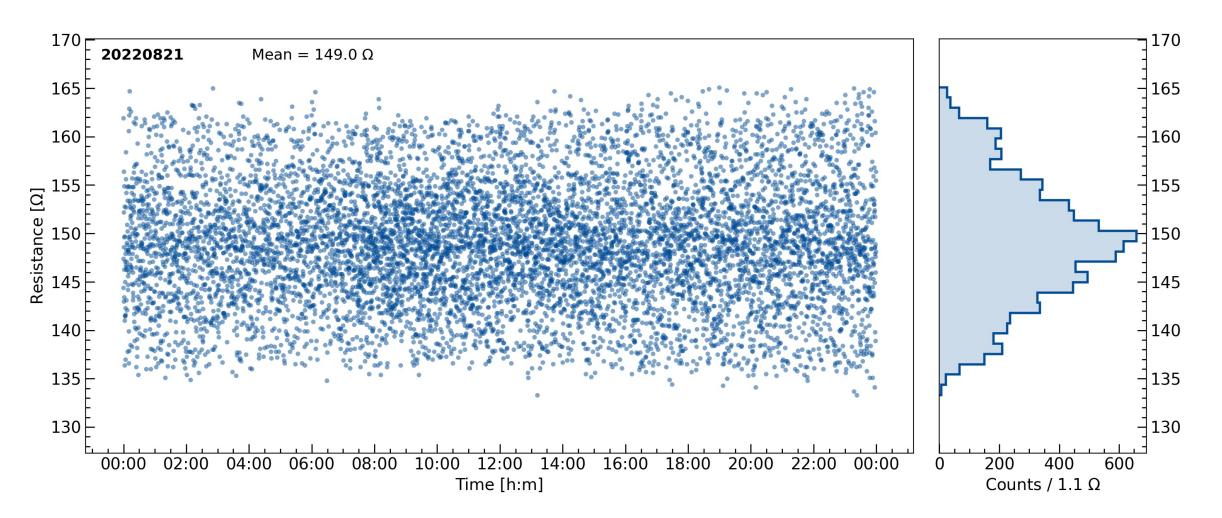
Fermilab


Vanessa Cerrone DUNE ND-LAr 2x2 Demonstrator tests

Project tasks I

- ArgonCube 2x2 modules tested in the Liquid Argon Test Facility (LArTF)
- Characterization measurement of the Ground Current Impedance Monitor (GIZMO)
- GIZMO slow control:
 - Read GIZMO and save data on database InfluxDB
 - Live monitoring through Grafana

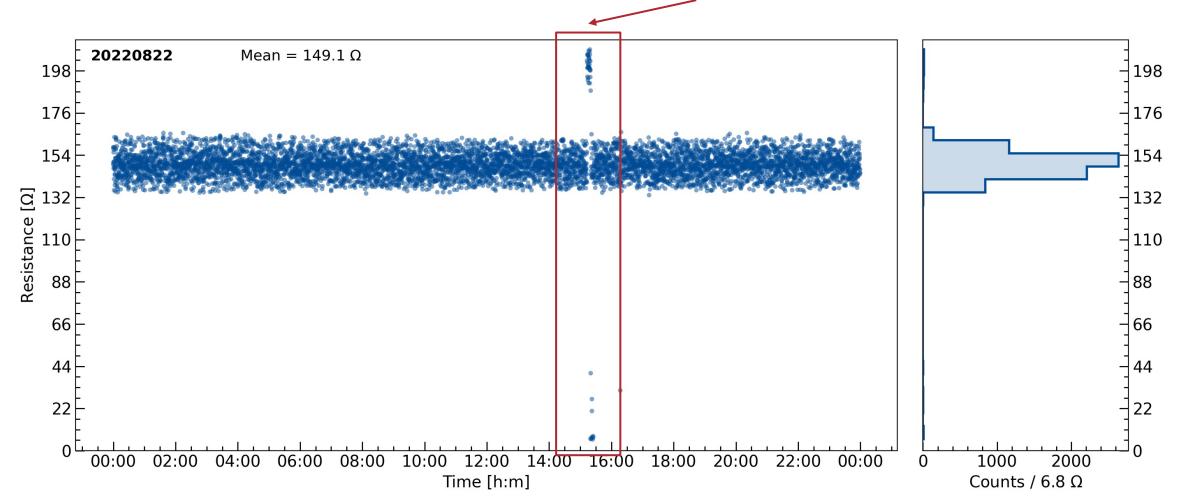
Impedance Monitor Control


GIZMO data

Vanessa Cerrone DUNE ND-LAr 2x2 Demonstrator tests

Impedance Monitor Control

Python script reading data from InfluxDB: 24 hours summary plot of the measured impedance.



‡ Fermilab

Impedance Monitor Control

24 hours summary plot of the measured impedance \rightarrow identify potential ground shorts.

7

Project tasks II

- ArgonCube 2x2 modules tested in the Liquid Argon Test Facility (LArTF)
- Characterization measurement of the Ground Current Impedance Monitor (GIZMO)
- GIZMO slow control:
 - Read GIZMO and save data on database InfluxDB
 - Live monitoring through Grafana

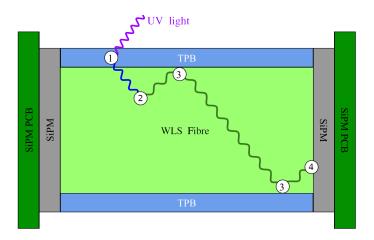
- Light Readout System (LRS) QA/QC tests
- LED calibration run analysis

🗲 Fermilab

2x2 Light Readout System (LRS)

Two comparable Silicon Photomultiplier (SiPM)-based systems sharing the same readout electronics:

 $u^{\scriptscriptstyle \mathsf{D}}$


ArgonCube Light detector (ACL) UV light UNIVERSITÄT Mask PCB Dichroic mirror (with mirror) SiPM WLS Plastic

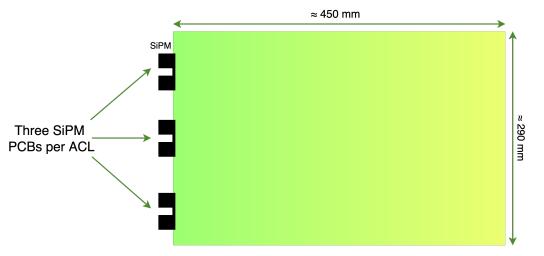
Schematics illustrating the working principle of an ACL module [3]

ArCLight

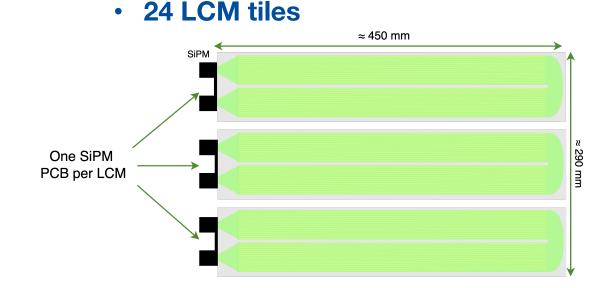
Light Collection Module (LCM)

Schematics illustrating the working principle of an LCM module (only one fiber) [3]

Fermilab


LCM

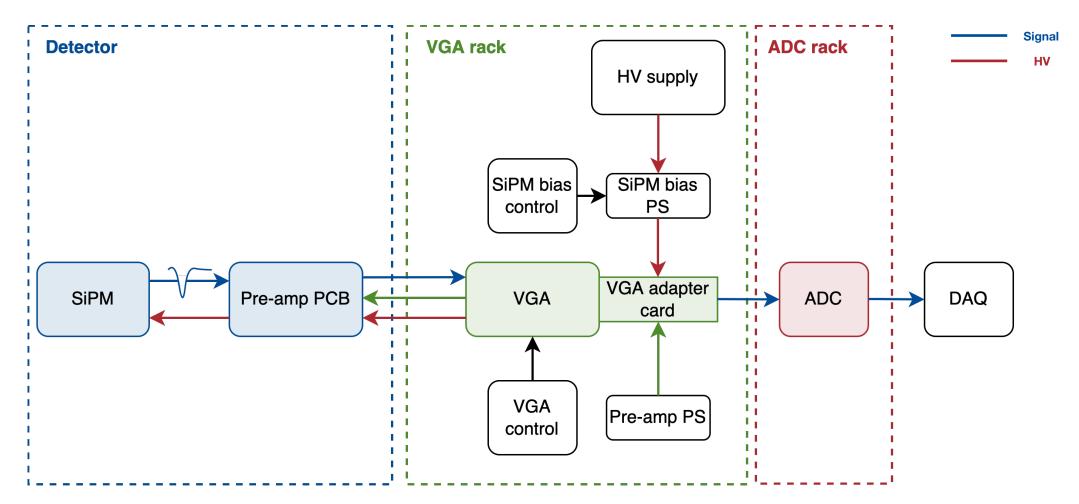
- Dielectric light trap: bar
- Accurate scintillation **position reconstruction**
- Dielectric light trap: fibers
- High **collection efficiency** ۲


2x2 Light Readout System (LRS)

Each 2x2 demonstrator module hosts:

• 8 ArCLight tiles

- Two SiPMs per Printed Circuit Board (PCB)
- Six SiPMs per ArCLight


- Three LCM tiles per array
- Six SiPMs per LCM array

Vanessa Cerrone DUNE ND-LAr 2x2 Demonstrator tests

LRS electronics overview

1 module : 96 SiPMs : 16 E-boards : 4 Variable Gain Amplifiers (VGAs) : 2 Analog-to-Digital-Converters (ADCs)

11

Current setup at LArTF

QA/QC procedure

• Pre-test:

- Measure current draw of pre-amplifier boards (E-boards) and test connections between readout (R/O) and detector electronics
- Power up VME crates with VGAs, ADCs, control boards and verify communication with all R/O electronics devices

• Full chain test:

- Test of full readout chain from SiPM to DAQ server
- All devices (VGA, ADC, SiPM bias supply) powered up and configured
- Check single photo electron (p.e.) noise on the ADC oscilloscope

LED calibration run

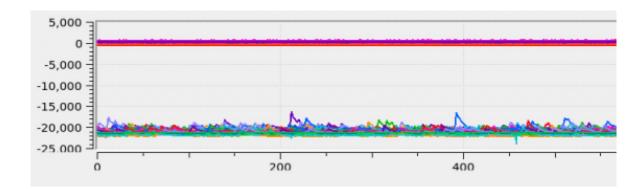
- Calibration LEDs: test the response of each single SiPM channel
- Measure SiPM gain by running at single photon regime

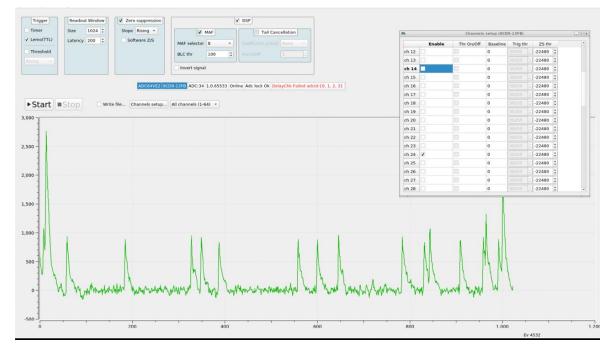
Pre-tests

- Measure pre-amp current draw for each (set of) E-boards
- +5 V and -5 V provided by PS module
- Expected \approx 68 mA per E-board channel
 - \rightarrow 4 x 68 mA = 272 mA per adapter card
 - \rightarrow 16 x 68 mA = 1.088 A for all E-boards
- Sum current not as expected \rightarrow test individual E-boards
- Verify integrity of cable connections between VGA adapter and single E-boards
- Power up VME crates with VGAs, ADCs, control boards

Pre-tests

- Measure pre-amp current draw for each (set of) E-boards
- +5 V and -5 V provided by PS module
- Expected \approx 68 mA per E-board channel
 - \rightarrow 4 x 68 mA = 272 mA per adapter card
 - \rightarrow 16 x 68 mA = 1.088 A for all E-boards
- Sum current not as expected \rightarrow test individual E-boards
- Verify integrity of cable connections between VGA adapter and single E-boards
- Power up VME crates with VGAs, ADCs, control boards


Module 1 results: All current draw measurements consistent with expectations


Integrity of cable connections is verified

Full chain tests

- Test of full readout chain from SiPM to DAQ server
- Establish communication and configure
 VGAs, ADCs and SiPM bias control board
- Ramp up SiPMs bias voltage to 90-100 V
- Trigger via pulse generator
- Output voltage on SiPM bias board (~ 57V in warm / ~ 46V in cold)
- Check each channel for **single p.e. noise**

🚰 Fermilab

Full chain tests

- Test of full readout chain from SiPM to DAQ server
- Establish communication and configure VGAs, ADCs and SiPM bias control board
- Ramp up SiPMs bias voltage to 90-100 V
- Trigger via pulse generator
- Output voltage on SiPM bias board (~ 57V in warm / ~ 46V in cold)
- Check each channel for single p.e. noise

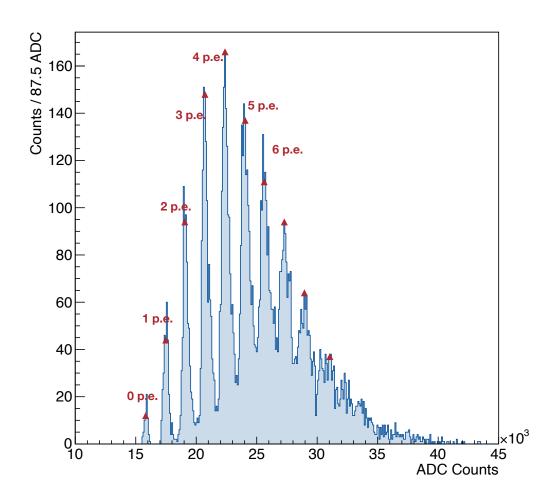
Module 1 results: LRS system successfully tested

No more dead channels compared to the Bern runs were found

LED calibration run

For final QA/QC tests

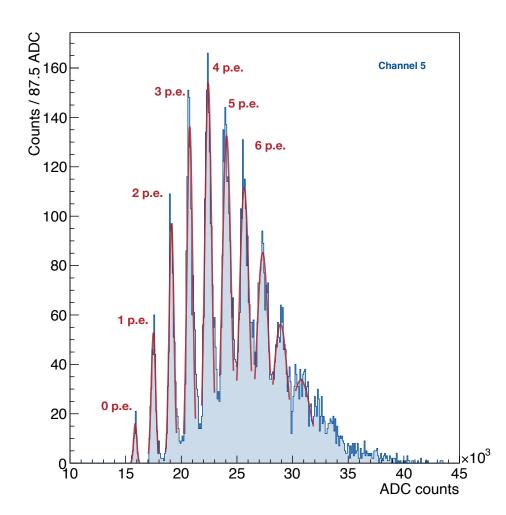
- Two blue LEDs on top and bottom of each TPC
- DAQ runs for each LED position with different amplitude settings → choose which LED to trigger
- Extract gain factor by studying single p.e. spectrum for each SiPM
- Tool to quickly perform this analysis during QA/QC tests → verify the proper operation of all ADC channels



SiPM charge spectrum

Find peaks

- ROOT TSpectrum to search for peaks
- Define threshold ($\geq 0.05 \times \text{highest peak}$)
- Get peaks x-axis position
 - Input parameter

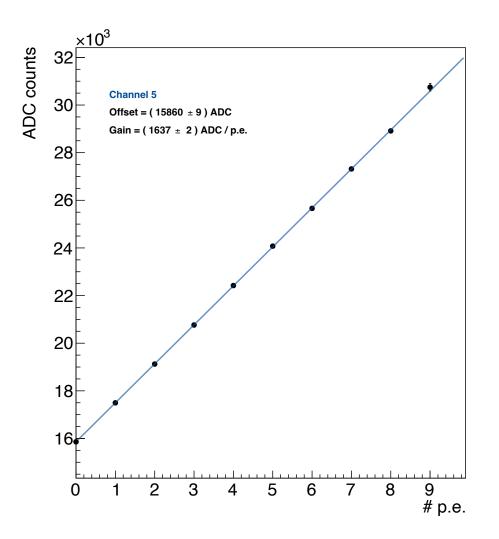

🛟 Fermilab

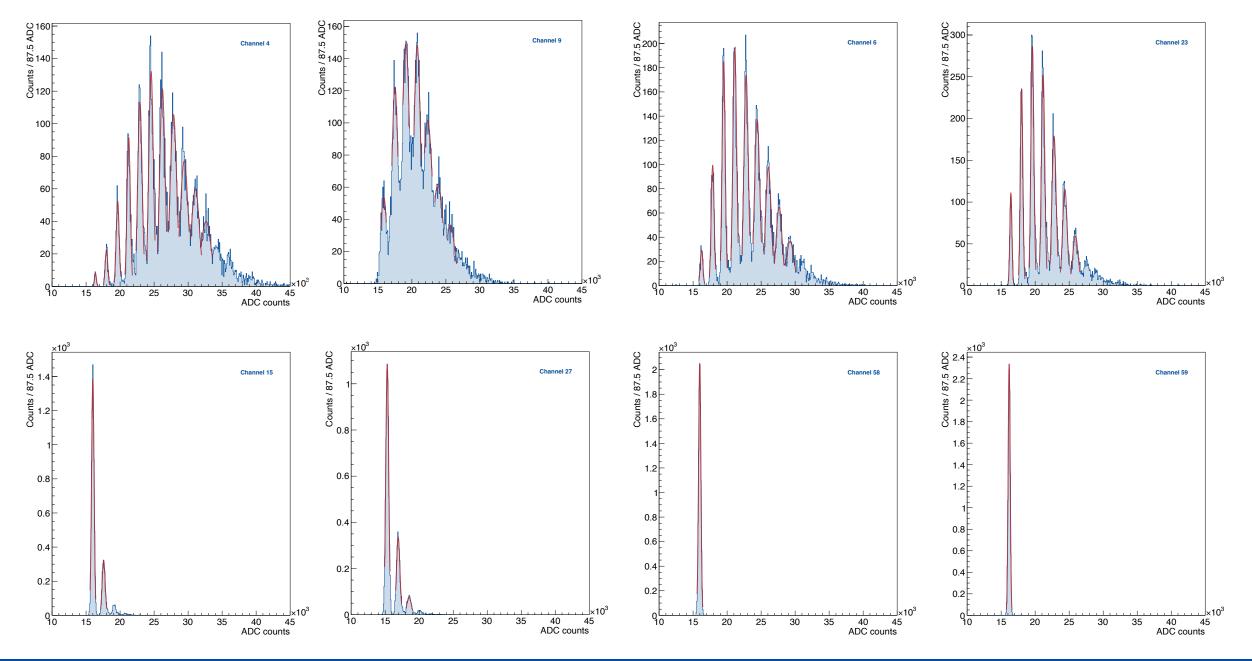
SiPM charge spectrum Fit peaks

- ROOT TSpectrum to search for peaks
- Define threshold ($\geq 0.05 \times \text{highest peak}$)
- Get peaks x-axis position
 - Input parameter
- Perform Gaussian fit

09/28/22

Extrapolate mean and standard deviation

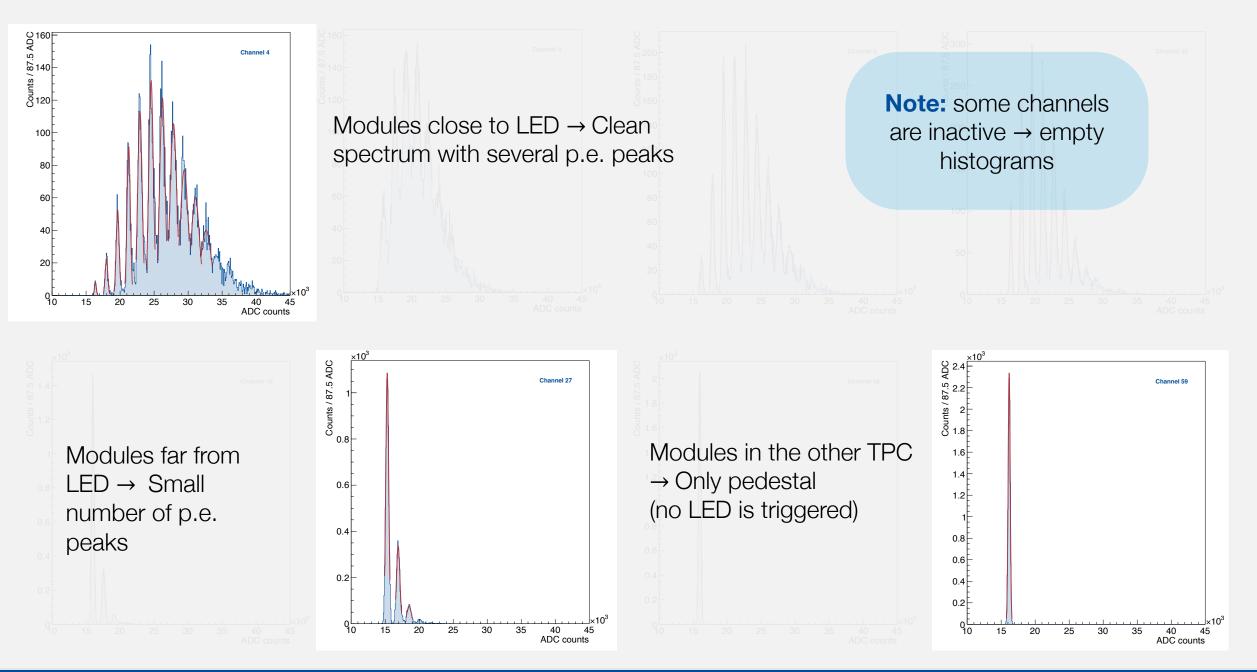



SiPM charge spectrum

Gain factor

09/28/22

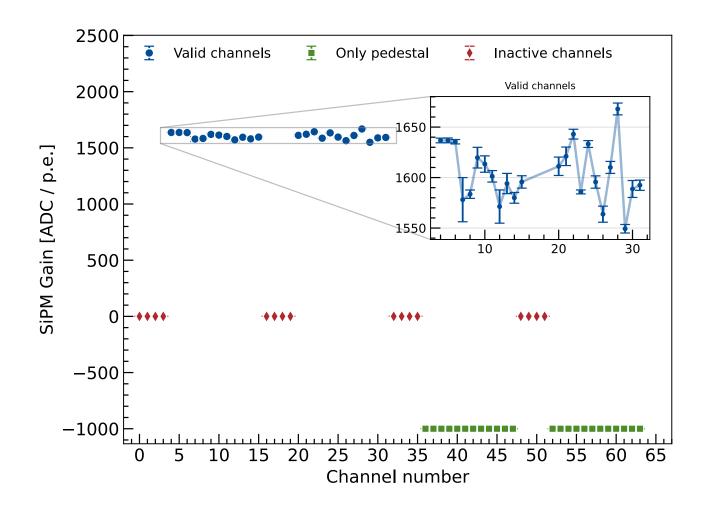
- ROOT TSpectrum to search for peaks
- Define threshold ($\geq 0.05 \times \text{highest peak}$)
- Get peaks x-axis position
 - Input parameter
- Perform Gaussian fit
 - Extrapolate mean and standard deviation
- Linear fit: slope \rightarrow single channel **gain** factor



Vanessa Cerrone DUNE ND-LAr 2x2 Demonstrator tests

09/28/22

‡ Fermilab



Vanessa Cerrone DUNE ND-LAr 2x2 Demonstrator tests

09/28/22

SiPM gain distribution

- Output csv file:
 - Channel number, number of p.e. peaks found, fit parameters
 - Inactive channels gain set to 0
 - Only pedestal gain set to -1000
- SiPM gain vs channel number
 - Highlight possible dead channels
 - Check if gain is in expected range (depends on individual run settings)

Fermilab

LRS cabling scheme

			-		•	3	/				-				ADC chan	LED: UV	/ A3, BLUE A4	ADC chan				
												Vi	EW FROM	I INSIDE TPC	15,16	LCM-118	LCM-106	31,32				
1			ng here starts from 1			NOR	RTH TPC 1	1	negZ													
	In the data and adc-64-system numbering starts from 0!											1	· · · · · · · · · · · · · · · · · · ·		13,14	LCM-117	LCM-105	29,30				
AC ch		sum	ADC chan glob	Cable	E-Board	LED: UV	V A3, BLUE A4	E-Board	Cable		sum					LOW-TH	LOWPTOD	A	han glob	sum	ADC chan	DAC ch
18,19	15,16		79,80			LCM-118	LCM-106	_ '		95,96		31,32	30,31	122,123 4	4	LCM-116		27,28	7,128		63,64	70,71
16,17	13,14	175 / 47	77,78	NL4	EL-106	LCM-117	LCM-105	ER-106	NR8	93,94	173 / 45	5 29,30	28,29	120,121 4	11,12		LCM-104		5,126	189 / 61	1 61,62	68,69
4,15	11,12		75,76		V	LCM-116	LCM-104			91,92		27,28	26,27	118,119 4	4 15,16	ACL-103 ACL-104		31,32	3,124		59,60	66,67
8,19	15,16		15,16							31,32		31,32	30,31	58,59 4	4			51,52	3,64		63,64	6,7
16,17	13,14	143 / 15	13,14	NL3	EL-102	ACL-103	ACL-104	ER-102	NR7	29,30	141 / 13	3 29,30	28,29	56,57 4	4 13,14		ACL-104	29,30	1,62	157 / 29	9 61,62	4,5
14,15	11,12		11,12					· · · ·		27,28		27,28	26,27	54,55 4-	4				9,60		59,60	2,3
2,13	9,10		73,74			LCM-115	LCM-103			89,90		25,26	24,25	116,117 4	4 11,12			27,28	1,122		57,58	64,65
10,11	7,8	176 / 48	71,72	NL2	EL-105	LCM-114	LCM-102	ER-105	NR6	87,88	174 / 46	6 23,24	22,23	114,115 3	3	LCM-115			9,120	190 / 62	2 55,56	126,127
8,9	5,6		69,70		V	LCM-113	LCM-101	· · · ·		85,86		21,22	20,21	112,113 3	₃ 9,10		LCM-103	25,26	7,118		53,54	124,12
12,13	9,10		9,10					_ '		25,26		25,26	24,25	52,53 4	4	LCM 114	LCM-102		7,58		57,58	0,1
10,11	7,8	144 / 16	7,8	NL1	EL-101	ACL-101	ACL-102	ER-101	NR5	23,24	142 / 14	4 23,24	22,23	50,51 3	3 7,8	LCM-114		23,24	5,56	158 / 30	0 55,56	62,63
8,9	5,6		5,6	'	/					21,22		21,22	20,21	48,49 3	5.0	LCM-113	LCM-101		3,54		53,54	60,6
						LED: UV7	V A2, BLUE A1							(V	5,6			21,22				
														1	9,10			25,26				

- Check connections ADC channel LRS modules
- In this case: LED A1 used

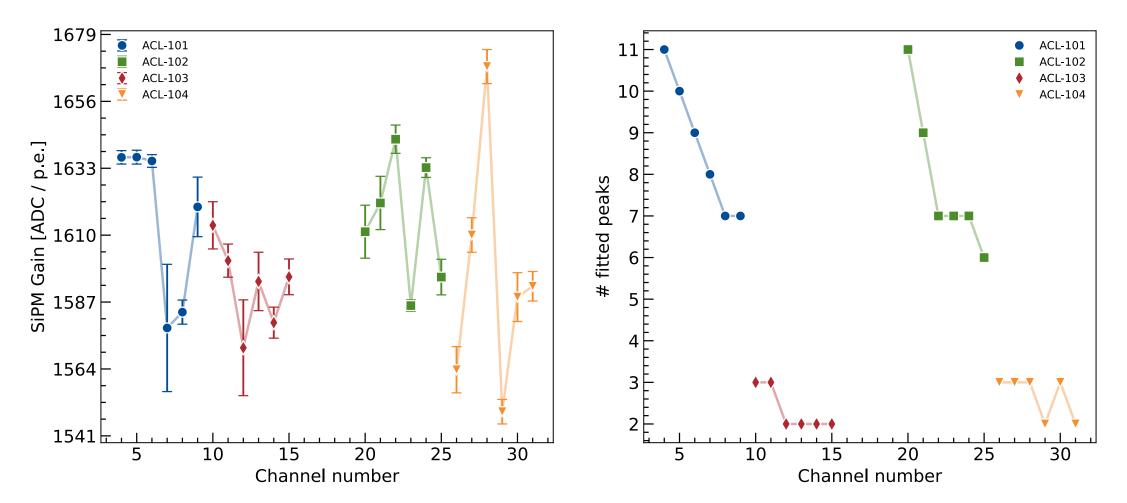
09/28/22

23,24

21,22

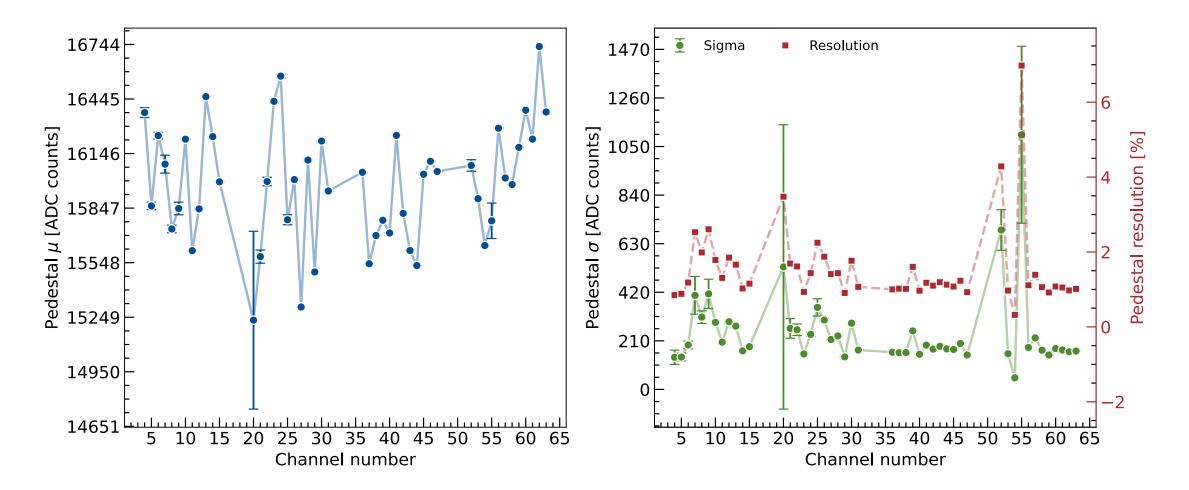
ACL-101

LED: UV A2 BLUE A1


7,8

5,6

ACL-102


SiPM gain distribution

• ACL101 and ACL102 show the highest light yield \rightarrow consistent with expectations

Pedestal analysis

• Compare **pedestal** centroid and sigma to highlight outliers or strange behaviors.

- Characterization of the Ground Current Impedance Monitor (GIZMO)
- Real-time monitoring of the impedance Detector/Building grounds

- Light Readout System QA/QC tests
- Developed a tool to perform the LED calibration analysis:
 - Extract SiPM gain

09/28/22

Identify possible malfunctioning channels

THANK YOU!

Fermilab

References

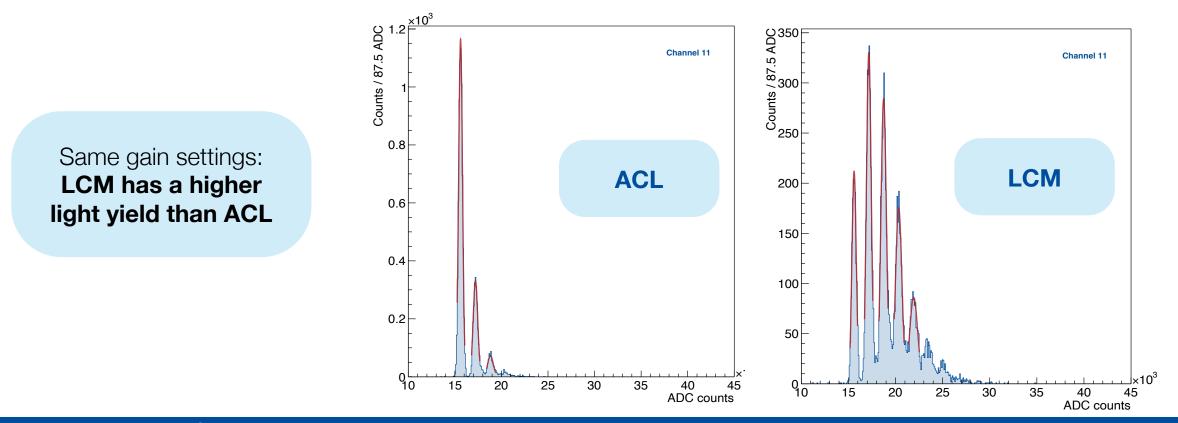
[1] "Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report", arXiv 2103:13910

[2] ArgonCube Collaboration, C. Amsler et al., "ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors", Tech. Rep. CERN-SPSC-2015-009

[3] Berner, Roman Matthias (2021), ArgonCube – A Novel Concept for Liquid Argon Time Projection Chambers

[4] ArgonCube collaboration website, <u>https://www.argoncube.org</u>

[5] M. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca et al., ArCLight – A Compact Dielectric Large-Area Photon Detector, Instruments 2 (2018) 3 [arXiv:1711.11409].



BACKUP

SiPM gain distribution

- LCM and ACL modules have different light yields
 - In each run the VGA gain and the LED amplitude are adjusted in order to be optimal for one of the two systems
 - Define different fit ranges and/or parameters

09/28/22