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Introduction

I took part to the Summer School organized by Fermilab and Università degli Studi di Pisa,
working on site from 1st August to 30th September 2022. I have worked with DUNE collabora-
tion, with Falvio Cavanna and Alexander Kish as supervisors. The task assigned to me was the
following:

”””Development of the photon detection system for DUNE Vertical Drift TPC.
The design of the Far Detector 2 of the Deep Underground Experiment (DUNE) is based on

innovative vertical drift liquid argon time-projection chamber (TPC), which will be instrumented
with large-area photodetection modules to search for neutrino interactions with low energy de-
posits via scintillation signal. The photosensors will be operating in cryogenic environment and
in high electric field. All electric power and signal will be transmitted via optical fiber guides.

Fermilab is leading the development of the power delivery over fiber (PoF) and front-end
electronics for analog and digital optical signal transmission (SoF). Dedicated R&D and test
facility is in operation at the FNAL Proton Assembly Building (PAB).

The activities foreseen for the period of August-September are: characterization of silicon
photomultipliers (SiPMs) and their aggregated read-out, optimization of the analog optical readout
electronics and SoF, studies with PoF, down-selection of the bias voltage generation solutions,
laser diodes and their assemblies, optical fibers and connectors.

Summer student will participate in all activities related to the project, from planning the test
and qualification procedures to their implementation, preparation of test stands, measurements
involving thermal cycling in cryogenic liquids (argon and nitrogen), data acquisition, its analysis
and interpretation, and preparation of technical notes and reports.”””

In this Final Term Report, I will explain the core of my work at FNAL and future plans.
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Chapter 1

DUNE

1.1 Overview

The term DUNE stands for ”Deep Underground Neutrino Experiment”. The program
will be carried out as an international, leading-edge, dual-site experiment for neutrino physics
and proton decay studies, indeed, the main objective of this experiment is to study long-baseline
neutrino oscillations (fig. 1.1)(experiments carried out over the past half century have revealed
that neutrinos are found in three states, or flavors, and can transform from one flavor into
another. These results indicate that each neutrino flavor state is a mixture of three different
nonzero mass states). Moreover, this studies will help us discover more about why matter is more
abundant than antimatter (the so called matter-antimatter asymmetry) and DUNE’s capability
to collect and analyze neutrino signal from a supernova within the Milky Way would provide a
rare opportunity to peer inside a newly formed neutron star and potentially witness the birth of
a Black Hole.

Figure 1.1: Neutrino oscillations.

1.2 The experiment

To achieve its goals, the international DUNE experiment, hosted by the U.S. Department of
Energy’s Fermi National Accelerator Laboratory (Fermilab) in Illinois, comprises three main
components (fig. 1.2):

1) a Long-Baseline Neutrino Facility (LBNF), hosted by Fermilab, that will deliver the
world’s highest-intensity neutrino beam, generated from a proton accelerator at Fermilab;

2) a high-precision Near Detector (ND) on the Fermilab site able to characterize and
monitor the beam;

3) a massive Far Detector (FD) installed deep underground at the Sanford Underground
Research Facility (SURF) 1300 km away in Lead, South Dakota.

2
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Figure 1.2: Configuration of the LBNF beamline at Fermilab, in Illinois, and the DUNE Near
and Far Detectors in Illinois and South Dakota, separated by 1300 km.

1.2.1 Far Detector

The Far Detector will be the largest and most technologically advanced liquid-argon neutrino
detector, composed of 4 massive liquid argon time-projection chambers (LArTPCs), installed
approximately 1.5 km underground. Each LArTPC will be hosted by a cryostat of internal
dimensions 15.1 m (w) Ö 14.0 m (h) Ö 62.0 m (l) containing a LAr mass of about 17.5 kt, for a
total of nearly 70kt.

DUNE is planning for and currently developing two LArTPC technologies: single-phase (SP)
in which all the detector elements inside the cryostat are immersed in liquid; and dual-phase
(DP), in which some components operate in a layer of gaseous argon above the liquid:

� in the SP technology, ionization charges drift horizontally (HD-LArTPC) in LAr under
the influence of an electric field (E field) towards a vertical anode, where they are read out.

� in the DP technology (fig. 1.3), ionization charges drift vertically (VD-LArTPC) in LAr
and are transferred into a layer of argon gas above the liquid, and devices called Large
Electron Multipliers (LEMs) amplify the signal charges in the gas phase before they reach
a horizontal anode.

Figure 1.3: The general operating principle of the DP LArTPC.
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In both technologies, the drift volumes are surrounded by a field cage (FC) that defines the
active detector volume and ensures uniformity of the E field within that volume.

1.2.2 VD-LArTPC

In the VD design (fig. 1.4), charge generated by ionization is drifted towards a set of grids
which allows the reconstruction of particles’ trajectories inside the chamber. Argon scintillation
light is also collected providing fast timing information used in event time reconstruction, precise
calorimetric energy reconstruction, efficient triggering capability, and to reduce energy threshold
and study low-energy neutrino interactions (i.e. SuperNova neutrinos).

Figure 1.4: VD LArTPC.

1.3 LAr technology

Argon is an excellent scintillator at a wavelength of 127 nm (UV), a property that both detector
designs exploit. This fast scintillation light (photons), once shifted into the visible spectrum, is
collected by photon detectors (PDs) in both designs. The light collection provides an initial start
time (t0) for every event recorded by the time projection chamber (TPC), indicating when the
ionization electrons begin to drift. Comparing the time at which the ionization signal reaches
the anode relative to this start time allows reconstruction of the event topology in the drift
coordinate (i.e. horizontal and transverse to the beam for SP and vertical for DP).

With an average energy of 19.5 eV needed to produce a photon (at zero field), a typical
particle depositing 1 MeV in LAr will generate 40,000 photons with wavelength of 128 nm. At
higher fields this will be reduced, but at 500 V/cm the yield is still around 20,000 photons per
MeV. Roughly 1/4 of the photons are promptly emitted with a lifetime of about 6 ns while the
rest havea lifetime of 1100–1600 ns. Prompt and delayed photons are detected in precisely the
same way by the photon detection system. The relatively large light yield makes the scintillation
process an excellent candidate for determination of t0 for non-beam related events.

Two key factors affect the performance of the DUNE LArTPCs: LAr purity (high to minimize
charge and light attenuation over the longest drift lengths in the detector module) and noise on
the cryogenic readout electronics.

1.3.1 Photon Detection System

The Photon Detection System (PDS) will use large 60 × 60cm2 X-Arapucas (fig. 1.5), a
box with highly reflective internal walls and with a set of wavelength shifters and a dichroic
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filter designed to trap photons on the inside of the device so they can be detected by silicon
photomultipliers (SiPMs).

(a)
(b)

Figure 1.5: An “arapuca” is a South American bird trap; the name is used here as an analogy to
the way the devices trap photons. These devices have been developed by DUNE collaborators
in Brazil.

1.4 Power supply and signal readout

1.4.1 Power and Signal over Fiber

Power will be supplied over fiber, indeed, the light of a high-power laser will be transmitted using
multi-mode fibers to a photovoltaic power converter placed inside the cryostat and close to the
photo-sensors. The readout will be made through optical fiber as well, using an Analog Optical
Transmitter inside the cryostat to transform the analog signal produced by PDs into an optical
signal and bring this to an Optical Receiver, which converts this optical signal into an analogical
one, ready to be acquired by an ADC (both the Receiver and the Digitizer will be placed in warm
- fig. 1.6). Fermilab is leading the development of the Power Delivery Over Fiber (PoF)
and front-end electronics for Analog and Digital Optical Signal Transmission (SoF).
Dedicated R&D and test facility is in operation at the FNAL Proton Assembly Building (PAB).

Figure 1.6: Scheme of Signal over Fiber transmission: Tx is the Analog Optical Transmitter
while Rx is the Optical Receiver).



Chapter 2

My Work at FNAL

The main aim of my work at FNAL is to test and characterize silicon photomultipliers (SiPMs)
and their aggregated read-out, together with the optimization of the analog optical readout
electronics (SoF). Firstly, I was engaged into the assembly of the experimental setup required to
complete such a task, so I was able, helped by my supervisors, to learn about and test all the
electrical and optical components involved. After we have ensured that the setup was able to
take data, we took some runs with the digitizer and the analysis part of my work could start.
In this section, I will show the hardware side of the work, trying to explain how the experiment
was setted up and how all the several components work.

2.1 Experimental Setup

Starting from bottom left of fig. 2.1, there is a 20 SiPMs test card (Hamamatsu, S14160/S14161
series), which was put in a Liquid Argon bath and illuminated by light diffused by a diffuser
and produced by an LED. This test card has 3 connectors: (i) Bias (green cable, indicated with
letter B), which supplies the necessary voltage given by a voltage supplier, that in this case I set
to give 36V, i.e. above the breakdown voltage of the SiPMs in LAr (which is around 32V); (ii)
Cathode (black cable, indicated with letter C) and (iii) Anode (red cable, indicated with letter
A), which are the output and are connected to che following component, that is the Analog
Optical Transmitter, and I used an Argon 2x2 Board 8 (5V voltage supplied) of the DUNE
Collaboration. In this case, I used the AC channel, since the DC one was not functioning. This
board is able to amplify the signal coming from the SiPMs, converts it into an optical signal
and then transmits it through an Optical Fiber (Single Mode, 9µm diameter, yellow fiber in the
picture) to the Optical Receiver, in this case I used a Koheron PD100 (connected to a voltage
supplier which supplies ±7V and the Ground). The Koheron is able to convert the optical signal
in input into an analog signal ready to be acquired by an ADC (CAEN Mod. V1720, 8 channels,
12 bits, TTL Logic), using the LED as Trigger.

6
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Figure 2.1: Experimental Setup.

In a second phase of characterization and testing, two elements have been changed (fig. 2.2):

1. the SiPM board produced by Hamamatsu has been changed with one arrived from Broad-
com (AFBR-S4N66P024M), which has a lower breakdown voltage in LAr, around 28V;

2. the Analog Optical Transmitter, from the Argon 2x2 Board to Argon SimpX3.

(a)

(b)

Figure 2.2: On the left, SiPM board (top) and Analog Readout (Bottom) used in the first setup,
while on the right there are their implementation
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2.2 Photo-detectors

2.2.1 SiPM

A SiPM is a matrix made of base elements called SPADs (Single Photon Avalanche Diodes, fig.
2.3). These are semiconductor based devices which operates in Geiger mode and are able to
produce a high current in response to the arrive of a photon, however, this current can saturate,
making the device not sensitive to new incoming radiation. For this reason, a ”quenching”
resistor is placed in series. All the SPADs are in parallel, so their current is summed, which
means that, since the current produced by each of them is fixed to the one produced for one
photon detected, this device can count how many photons impact its surface.

Figure 2.3: SiPM principle of functioning.

2.3 Optical Readout

2.3.1 Analog Optical Transmission

DUNE VD will have a system which can convert an analog signal, e.g. coming from the SiPMs
of the photon detection system (PDS), into an optical one that can be transmitted through
optical fiber. Such a device works based on a simple element: a laser diode. A laser diode is a
semiconductor device similar to a light-emitting diode (LED) in which a diode pumped directly
with electrical current can create lasing conditions at the diode’s junction. Driven by voltage, the
doped p–n-transition allows for recombination of an electron with a hole. Due to the drop of the
electron from a higher energy level to a lower one, radiation, in the form of an emitted photon
is generated. This is spontaneous emission. Stimulated emission can be produced when the
process is continued and further generates light with the same phase, coherence and wavelength.
In order to achieve this condition, several stages of amplification are used to amplify the signal
coming from the SiPM board.

We used two different boards as analog readout:

1. Argon 2x2 Board, for data taken on 1 September 2022 (fig. 2.4a);
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2. Argon Simp X3, for data taken on 20 September 2022 (fig. 2.4b);

Schematic for both SiPMs board can be found in the Appendix, as well as for Argon SimpX3.

(a) (b)

Figure 2.4: Argon 2x2 Board on the left, Argon Simp X3 on the right.

2.3.2 Optical Receiver

The optical receiver is a device used to convert the optical signal coming from the analog readout
(Argon 2x2 Board or Argon Simp X3 in my case) into an analog signal ready to be acquired by
an ADC. The one used in my setup is the Koheron PD100 (fig. 2.5).

(a) (b)

Figure 2.5: On the left, there is an image of the Koheron PD100, while on the right its schematic.



Chapter 3

Data Analysis

The aim of data analysis is to develop a code that is able to completely characterize SiPMs
used in the experiment. This code should determine important properties of these boards (like
Gain, Signal to Noise Ratio and Resolution to Single Photoelectron), in order to select the
best configuration of SiPMs and Optical Transmitter to use. Moreover, this code, once finally
developed and approved, could be used in the normal characterization routines at PAB (Proton
Assembly Laboratory, located in Fermilab).

Data shown in the following analysis have been taken in PAB on 1 September 2022 or on
20 September 2022. On the first date, We used only Hamamatsu SiPM board with Argon 22x2
Board as analog readout, while on the second date we tried both Hamamatsu and Broadcom
boards with the new analog readout. The main purpose of the analysis has been to develop the
code necessary to characterize a SiPM response to LED flashes and to test several devices and
components (as I have already mentioned), in order to give a feedback on their performances.

3.1 Data taken on 1st September 2022

3.1.1 Waveform Example

The data file I took containes 10k events (i.e. 10k waveforms), and each of them has 5000
samples, for a total time length of 20µs per event (sampling rate of 0.25 GHz). I have calculated
the baseline for each event and filter applied and then subtracted it to each point. The baseline
value to subtract, let’s say µbsl, has been calculated as the mean value of the voltage in the first
300 samples (1.2µs from the start, colored in yellow in fig. 3.1) for each waveform and filter
separately. The dashed lines represent the values of amplitudes corresponding to ±3σbsl, where
σbsl is the standard deviation of the distribution of the amplitude values in the same first 300
samples, and represents the dispersion of these 300 points around the mean value of the baseline.
In fig. 3.1, there is an example of waveform taken with the setup shown in the previous chapter.
On the top left, we can see the raw waveform while the other 3 quarters of image are obtained
applying 3 different digital filters to raw data, in order to suppress high frequency noise, in order:
Median (top right), Gaussian (bottom left) and Savitzky-Golay (bottom right).

10
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Figure 3.1: Example of raw and with filters applied waveforms. In order: Raw (top left), Median
(top right), Gaussian (bottom left), Savitzky-Golay (bottom right). Data taken on: 1 September
2022.

Moreover, the baseline regions (represented by the area between the two dashed lines in fig.
3.1) change with the kind of filter applied: raw waveform, since there is no filter applied to
remove noise, has the widest baseline region, while it gets narrower applying a filter. Generally
speaking, I have noticed that applying Gaussian filter gives a smaller baseline dispersion with
respect to Savitzky-Golay filter (both smaller than Raw data in fact), while Median filter results
in a non-constant effect to the baseline region.

Finding Peaks

In my analysis, I have implemented an algorithm that is able to find peaks in an event (based
on some characteristics of these peaks), retrieve their main parameters (such as width, height,
prominence, sample and time at which it is recorded) and calculate the optimal window where
to integrate the main peak and calculate the charge associated with it (shown in red in fig. 3.1).
The window can be set as fixed or determined in the following way: the starting and ending
samples of the integration window are selected as those samples for which the voltage values are
respectively the first and the last above a certain threshold thr (in my case, I used thr= 3σbsl,
so that it is possible avoid noise).

3.1.2 Mean Baseline Distribution

Once I have calculated the baseline averages for each event and filter, I could just plot these
values (filter by filter) and fit these distributions with a gaussian (fig. 3.2), in order to calculate
a mean and an error associated with it.
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Figure 3.2: Distributions of baseline averages for all events and filters applied. Notice that the
mean is the same within errors.

As shown, all values obtained are comparable within errors, so applying a filter does not
change the mean value of the average of the baselines computed on all events, but just the
dispersion (in particular, they tend to reduce it as shown in fig. 3.1) of baseline samples (for
instance, the first 300 ones) around this mean value.

3.1.3 Finger Plot

The main properties used in the following analysis are peaks’ amplitudes and charges, that help
us create the so called Finger Plot (the name comes from the characteristic peaks which should
arise).

Using Amplitudes

For each event (waveform) we consider the amplitudes of all peaks found, and make an histogram
across all the events. What we obtained with this dataset is shown in fig. 3.3.
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(a)

(b)

Figure 3.3: Finger Plot with peaks’ amplitudes.

In fig. 3.3a, we can see how the algorithm is able to find peaks and minima in order to
autoset the ranges to fit the several peaks, while in fig. 3.3b we have the partial and total fits
performed. For some of the filters (in this case Gaussian and Savitzky-Golay) there are some
problems with the fit, messed up by some events indicated with a black arrow. These events can
be noise (should be possible to remove applying some cuts on peaks properties, and this would
be a future improvement of the code), or the superimposition of the first two peaks (maybe
pedestal and SPE but not validated) due two low resolution of the system. Plotting the means
of the peaks obtained with the fit against the number of the peak, we can obtain fig. 3.4.
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Figure 3.4: Gain Amplitudes 1.

We can observe the expected linear behaviour, but we can’t validate data, since it is still
not possible to determine if the first peak representes the Pedestal or 1 or more p.e.. Further
analysis and improvements in the code should let us undertsand something more.

Using Charges

For each event (waveform) we consider the amplitudes of all peaks found, and make a histogram
across all the events. What we obtained with this dataset is shown in fig. 3.5.
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(a)

(b)

Figure 3.5: Finger Plot with peaks’ amplitudes.

In this case, we have no resolution with Raw Data and Median filter, while some peaks arise
using Gaussian or Savitzky-Golay filters. Plotting the means against the peak number, I obtain
fig. 3.6 but get the same uncertainty problems arisen with amplitudes analysis.
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Figure 3.6: Gain Charges 1.

3.2 Data taken on 20th September 2022

In this data acquisition, we swapped the Argon 2x2 Board with the new designed one, the
Argon SIMP X3, and used both SiPM Boards (Hamamatsu and Broadcom), in order to test the
new components.
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3.2.1 Waveform Example

(a) Run 1608. Broadcom, 7.0, 40V. (b) Run 1553. Broadcom, 10.0, 40V.

(c) Run 1638. Hamamatsu, 6.4, 38V.

Figure 3.7: Waveform examples coming from three different datasets. Type of SiPM, LED
intensity and Bias voltage used are reported for each of them.

As we can see from fig. 3.7 Broadcom SiPM board has longer pulses and higher undershoot with
respect to Hamamatsu one, making the system not sensitive and able to detect new photons for
longer time. For this reason, we want to avoid these two problems. From now on, data coming
from run 1553 will be shown.

3.2.2 Mean Baseline Distribution

Figure 3.8: Distributions of baseline averages for all events and filters applied. Notice that the
mean is the same within errors.
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3.2.3 Finger Plot

Using amplitudes

(a)

(b)

Figure 3.9: Finger Plot with peaks’ amplitudes. Due to high LED intensity, the amplitudes
start with high values (can’t see SPE). With Gaussian and Savitzky-Golay filters there is no
resolution.
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Using charges

Figure 3.10: Finger Plot with peaks’ charges. One can notice that there is a problem with
charge, since there is no resolution (with both raw and filtered data). This behaviour needs to
be futher analyzed and inspected in order to understand the reasons behind it and how to fix it.
Probably, it is due to some optical noise introduced by the new analog optical transmitter.

3.2.4 Amplitude vs Time of peaks

(a) (b)

Figure 3.11: We see probably a signal region and a noise region, but further analysis are required
to convalidate. Moreover, a sequence of stripes is clear, showing a descrete increase in the valuse
of amplitudes, which we can impute to the arrival of a discrete number of p.e..



Chapter 4

Conclusions

4.1 Summary

In these two months being at Fermilab, I have been involved in the following tasks:

1. preparing the experimental setup shown before;

2. testing all the electrical and optical components;

3. acquiring several sets of data, changing SiPM board and Analog to Optical Transmitter;

4. data analysis, creating a code able to:

– read all events (waveforms), plot them and apply 3 digital filters (high-frequency
noise);

– calculate and subtract baseline;

– creating a first simple algorithm able to find peaks, integrate the in a fixed or moving
window and save their main properties (amplitude, sample, time, charge);

– plot and fit Finger Plot (using both amplitudes and charges); calculate gain (using
both amplitudes and charges).

4.2 Future Plan

As future plan, I would like to:

1. take data which are usable to calculate SNR (Signal to Noise Ratio) and Resolution to
SPE;

2. compare several types of SiPMs, coming from different vendors, and Analog readout boards
in different configurations;

3. further improve algorithm to find peaks and integrate Finger Plots;

4. further improve code to select and discard noise and background events;

5. calculate PDE (Photon Detection Efficiency).
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A.1 Schematics
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Figure A.1: Hamamatsu and Broadcom SiPM boards schematic.
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Figure A.2: Argon SimpX3 schematic.
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Figure A.3: Argon SimpX3 schematic.
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Figure A.4: Argon SimpX3 schematic.

1

1

2

2

3

3

4

4

D D

C C

B B

A A

4

Fermi National Accelerator Laboratory
United States Department of Energy
Realtime System and Engineering (RSE) department4

ARGON_SIMP_X3 CH3

1.0
5/26/2022 9:52:09 AM
C:\Projects\DUNE\Argon_SimpX3\Altium\Rev1\ARGON_SIMP_X3_CH3.SchDoc

Title

Size: Number:

Date:
File:

Rev:

Sheet ofTime:
L

Engineer: Alan Prosser
Drawn: Greg Deuerling

GND

1

TP20

5%50
V

06
03

C
0G

/N
P0

C12 3.3pF

5%50
V

06
03

C
0G

/N
P0

C8 3.3pF

V-
4

+3

-2

V
+

7

6

U6

OPA354AIDDA

VDD3

GND

GND

VDD3

10%

50V0603

X5R

C35
.1uF

1/10W

0603

1%

R42 100

1/10W

0603

1%

R39 100

10%

16V0603

X5R

C33
4.7uF

GND

VDD3

1
3

2
4

CA
SE LD3

T13F-XYZ-WM-D

10%

50V0603

X5R

C34
.1uF

1/10W

0603

1%

R41 10 1

3
2 4

Q3
BFP650H6327XTSA1

1/
10

W

08
05

1%

R34

10

GNDGND

GND GND

1/10W

0603

1%

R43 2.0K

PD3

1 2L3 18nH

1/
10

W

08
05

1%

R40

0

1/
10

W

08
05

1%

R33

10

12
06

10
% NTC3

10

GND GND

1/
10

W

08
05

1%

R32

49.9

1/
10

W

08
05

1%

R37

69.8

10%

50V0603

X5R

C31
1uF 10%

50V0603

X5R

C32
1uF

10%

50V0603

X5R

C36
1uF

GND

VDD3

VDD3 VDD3

1/10W

0603

1%

R45 1.4K

1/10W

0603

1%

R35 1.3K

1

2 3 4 5

SMA
P6

0731000114

1

2 3 4 5

SMA
P5

0731000114

GND

GND

1

TP25

DNP

DNP DNP

1/
10

W

06
03

1%

R46

10K

1/
10

W

06
03

1%

R44

10K

10%

50V0603

X5R

C37
1uF

VDD3

GND

S1_0

1

TP21

NOTE:

Cx

Cy

Cx & Cy can be a cap
or 0 ohm resistor

1/10W

0603

1%

RC6 0

1/10W

0603

1%

RC5 0

1

TP23

GND

1

TP24

GND 1

TP22

GND

1/
2"

R
ou

nd

2-
56

ST5

93330A282

2-56

3/16"
SC9

91772A076

2-56

3/8"
SC11

91772A079

1/
2"

R
ou

nd

2-
56

ST6

93330A282

2-56

3/16"
SC10

91772A076

2-56

3/8"
SC12

91772A079

Laser Diode Hardware

PIC801 PIC802 

COC8 

PIC1201 PIC1202 

COC12 

PIC3101 

PIC3102 
COC31 

PIC3201 

PIC3202 
COC32 

PIC3301 

PIC3302 
COC33 

PIC3401 
PIC3402 

COC34 

PIC3501 

PIC3502 
COC35 

PIC3601 
PIC3602 

COC36 

PIC3701 

PIC3702 
COC37 

PIL301 PIL302 

COL3 

PILD301 PILD302 

PILD303 PILD304 COLD3 

PINTC301 

PINTC302 
CONTC3 

PIP501 

PIP502 PIP503 PIP504 PIP505 

COP5 

PIP601 

PIP602 PIP603 PIP604 PIP605 

COP6 

PIQ301 

PIQ302 

PIQ303 

PIQ304 

COQ3 

PIR3201 

PIR3202 
COR32 

PIR3301 

PIR3302 
COR33 

PIR3401 

PIR3402 
COR34 

PIR3501 PIR3502 

COR35 

PIR3701 

PIR3702 
COR37 

PIR3901 PIR3902 

COR39 

PIR4001 

PIR4002 
COR40 

PIR4101 PIR4102 

COR41 

PIR4201 PIR4202 

COR42 

PIR4301 PIR4302 

COR43 

PIR4401 

PIR4402 

COR44 

PIR4501 PIR4502 

COR45 

PIR4601 

PIR4602 

COR46 

PIRC501 PIRC502 

CORC5 

PIRC601 PIRC602 

CORC6 

COSC9 COSC10 

COSC11 COSC12 

COST5 COST6 

PITP2001 
COTP20 

PITP2101 

COTP21 

PITP2201 

COTP22 

PITP2301 

COTP23 

PITP2401 

COTP24 

PITP2501 

COTP25 

PIU602 

PIU603 

PIU604 

PIU606 

PIU607 COU6 

PIC1202 

PIC3102 PIC3202 

PIC3302 

PIC3402 

PIC3502 

PIC3602 

PIC3702 

PIP502 PIP503 PIP504 PIP505 

PIP602 PIP603 PIP604 PIP605 

PIR3201 

PIR3701 

PIR4302 

PIR4501 

PITP2201 

PITP2301 

PITP2401 

PIU604 

PIC801 

PIR3502 

PIR3902 PIU602 

PIC802 PIL301 

PIR3301 
PIR3501 

PIC1201 

PIR4202 

PIR4402 

PIR4502 

PITP2501 

PIU603 

PIC3101 PIC3201 

PIR3401 

PIC3701 PIR4401 

PIR4602 

PIL302 

PINTC302 PIR3402 

PIR3702 

PILD301 

PIR4002 

PILD304 

PINTC301 

PIR3202 

PIP501 PIRC502 

PIP601 PIRC602 

PIQ301 PIR4102 

PIQ302 PIQ304 

PIR3302 

PIQ303 

PIR4001 

PIR3901 

PIRC501 

PIR4101 

PITP2001 

PIU606 

PIR4201 

PIRC601 

PILD302 
PIR4301 

PITP2101 
NLPD3 

PIC3301 

PIC3401 

PIC3501 

PIC3601 

PILD303 

PIR4601 

PIU607 

Figure A.5: Argon SimpX3 schematic.
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