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1 Introduction

Muz2e experiment will search for the neutrinoless u~ — e~ conversion in the field of an aluminum nucleus.

The total expected background in Mu2e Run I is 0.11 £ 0.03 events, and the antiproton background, 0.01 +
0.003(stat) £ 0.010(syst), is about 10% of the total [1].

The report discusses the antiproton background of the Mu2e experiment. As it will be explained, the antiproton
background is sensitive to the vertical misalignment of the Mu2e beamline. Therefore, it is important to
measure the misalignment in situ. The report introduces a data-driven technique of measuring the beamline
misalignment.

The material is organized as follows. Section 2 describes the Mu2e experiment. Section 3 presents the antiproton
background. Section 4 explains the alignment in the apparatus. Section 5 presents the vertical misalignment
and a method to measure it from the data. Section 6 presents the initial simulations made and the discussion
of the results.

2 Mu2e experiment

2.1 Mu2e apparatus

The Mu2e experiment primary proton beam with Ey;,, = 8.9GeV is extracted from the Fermilab Delivery
Ring. The three superconducting solenoids, in order: production solenoid (PS), transport solenoid (TS)
and detector solenoid (DS) lead particles from the production target, in the PS; to the stopping target, in
the DS. The inner part of all three solenoids is kept at vacuum. Figure 1 presents a schematic view of the Mu2e
apparatus.

The beam is impinging on a ~ 1.6 interaction lenghts-long tungsten production target (PT) located in the
middle of the PS. The beam has a pulsed time structure, with 250 ns wide pulses separated by 1695 ns.
The PS graded magnetic field reaches its maximal strength of 4.6 T downstream of the PT.

Muons forming the Mu2e muon beam are produced in 7= — u~ 7, decays of charged pions. Muons produced
backwards as well as muons produced in the forward direction and reflected in the PS magnetic mirror are
captured by the S-shaped transport solenoid and travel through it towards the DS. Muons are produced in both
PS and TS.

The TS magnetic field is also graded, from ~ 2.5T at the entrance to ~ 2.1T at the end. Three collimators
placed inside the TS, COL1 at the entrance, COLS3 in the middle and COLS5 at the exit, define the TS
momentum acceptance, limiting it to momenta below ~ 100 MeV/c.

The TS shape rotates the direction of the magnetic field, and while moving through the TS the charged particles
of different signs drift vertically in opposite directions. In the middle of the TS, the positive and negative particles
are well separated in the vertical direction, and the offset vertically opening of the COL3 collimator selects the
beam sign. A rotation of the COL3 allows to switch the beam sign from negative to positive and vice versa -
see Figure 6.

The DS magnetic field is graded in the upstream part, B = 27 — 17T, and uniform, B ~ 17T, in the downstream
region. The stopping target (ST) is made of 37 aluminum annular foils spaced 2.2 ¢cm apart. Each foils is
105 um thick. The ST is placed in the graded magnetic field region of the DS on the DS axis. The particle
detectors, the tracker and the calorimeter, are located in the downstream part of the DS.
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Production target

Transport solenoid Tracker

Figure 1: Schematic view of the Mu2e apparatus. The center of the Mu2e reference frame is located in the COL3
collimator center, its y-axis points upwards, the z-axis is parallel to the DS axis and points downstream, and the x-axis
completes the right-handed reference frame.



A fraction of muons, 1/3 of the total that reaches the ST, stops and interacts with the Al atomic field. These
muons have p < 50 MeV/c. The stopped muon rate, that is the number of stopped muons for primary proton,

is N}‘%T = 1.6 x 10~3 from the muon beam simulations.

Muons stopped in the target rapidly decay to a orbital 1s in the 2 Al atoms, where they could undergo the process
- — e~ . Being a two body decay, the electron momentum distribution is expected to be monochromatic. In
addition, the nucleus in the final state remains in the ground state therefore the conversion electron has an
energy equal to:

ECE = my — Erecoil - Ebind = 104.97 M€V7 (1)

where m,, is the muon mass, E,.c.oi is the recoil energy of the target nucleus, and Ej;nq is the binding energy
of the 1s state of the muonic atom.

2.2 Backgrounds
Several background processes can generate electrons with energy ~ 105 MeV'.

e Cosmic rays, mostly muons, interact in the detector sensitive volume and produce electrons with p ~
100 MeV/c. The Cosmic Ray Veto system (CRV) suppresses this background by four orders of magnitude.

e Muons captured by Al atoms decay in orbit (DIO) producing electrons with a momentum spectrum
extending up to 105 MeV/c. Suppression of this background requires a detector with an high momentum
resolution Ap < 1 MeV/ec.

e Antiprotons annihilate in the stopping target produce p ~ 100 MeV/c electrons. Antiproton flux is
suppressed with several absorption element placed inside the TS.

e Radiative capture of pions (RPC) stopping in the ST produce p ~ 105 MeV/c electrons. Suppressing
this background requires delayed measurements compared to the arrival of the proton pulse at the PT by
hundred nanoseconds.

¢ Radiative muon capture (RMC), analogous to RPC. The kinematic endpoint, E ~ 102 MeV, is lower
than RPC.

e Electrons with p ~ 100 MeV scattering in the Al target, a delayed measure is needed to suppress this
background.

e Decays in flight of 4~ and 7~ producing p ~ 100 MeV electrons in the DS which are detected by the
tracker.

The physics processes listed above have different time dependencies. For u~ — e~ conversion, DIO and RMC
the time dependence is defined by the lifetime of a muonic Al atom, 864 + 1ns. Cosmic rays background is
distributed uniformly in time. RPC timing depends on the pion lifetime. Beam electrons and decays in flight
are negligible and related to not extinct protons timing.

2.3 Mu2e detector

The detector structure includes a straw tracker to measure momenta of the secondary charged particles, an
electromagnetic calorimeter to estimate the energy and the Cosmic Ray Veto system (CRV).

The tracker consists of 18 tracking stations. In total there are 20736 straws tubes of 5 mm diameter each, filled
with a 80% : 20% Ar : CO, mixture at a pressure of 1 atm.

The hit coordinate along the straw is reconstructed using the difference between two timing measurements
obtained by reading out each straw from both ends. For 100 MeV electrons, the momentum resolution of the
tracker is Apy, < 300 KeV/cFWHM. For muons with the same momentum, the resolution is worse, by a factor
1.5 + 2, due to the higher energy losses.

The calorimeter is composed by two annular disks, with an internal radius of 37 cm and an external radius of
66 cm, positioned at 70 cm distance from each other. Each disk is assembled from 674 undoped Csl crystals,
3.3 x 3.4 x 20cm? in size. Crystals are read out by two silicon photomultipliers (SiPMs).

The tracker is placed about 3 m downstream of the stopping target in the uniform magnetic field region of the
DS. The calorimeter is located immediately downstream of the tracker. The two detectors together provide
efficient particle identification.

The data read out from the detectors are digitized and transmitted through optical fibers by the data acquisition
system (DAQ).



2.4 Analysis and simulation software

We simulate production of particles in the production target and trace the beam up to the stopping target.
The particles produced in the stopping target are simulated taking into account the detector geometry. The
simulation framework provides reconstruction algorithm and visualization tools.

Once the events are reconstructed, the reconstructed tracks are parameterized with the following parameters:

P (dOa d)Oa W, 20, tan)\)a (2)

Figure 2: Left: Helix trajectory. Right: xy-view of the track.

where dy is the distance of the point of closest approach from the solenoid system axis and the sign depends on
the momentum direction in that point; ¢ is the momentum direction in the point of closest approach; w = 1/R;
zo is the z-coordinate of the point of closest approach; 90° — X is the petch angle between p and xy plane.

The experimental signature of a = — e~ conversion is a peak around 105 MeV/c in the momentum distribution.
The estimated total background in the Mu2e Run 1 is 0.105 £ 0.032, but the experimental rate is unknown. An
estimate of small backgrounds is an experimentally challenging task.
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Figure 3: Left: Peak around 105 MeV/c in the electron momentum distribution in red, with backgrounds. Right: Zoom
on the backgrounds. It is visible that for the assumed value of R,. the estimated total background is lower than the

peak.



3 Antiproton background

Antiproton background is due to the annihilation of antiprotons in the stopping target. The antiprotons are
produced in the interaction of the proton beam in the tungsten target. Such antiprotons can pass through the
TS and reach the stopping target in the DS. The annihilation in the stopping target could result in a signal-like
conversion electron.

The delayed measurement window can’t sufficiently suppress this background. To suppress this background,
several thin absorbers are placed at the entrance and at the center of the TS. The antiproton background is
sensitive to the vertical misalignment of the collimator.

One of the biggest uncertainty on the estimate of the antiproton background comes from the angular dependence
of the antiproton production cross section. Currently available data on the antiproton production at beam
momentum around 10 GeV cover the range between 0° — 120° as seen in figure 5.
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Figure 4: Angular dependence of the antiproton production cross section in p-Ta interactions at 10 GeV/c.

Relevant for Mu2e experiment are antiproton productions around 180°. Moreover, the available data are at
energy around ~ 10GeV/c while the Mu2e proton beam has a momentum of 8.9 GeV/c, the cross section
changes by a factor about 2 from 10 GeV/c to 8.9 GeV/e.

The antiproton background estimate is (8.1 & 0.7(stat) + 8.1(syst)) x 1073, the systematic relative error is
assumed to be 100%.



4 Apparatus alignment

Mu2e beams are unique, one of positively charged particles and one of negatively charged particles. The beams
are helical and move through the TS.

The S-shape solenoid consist in two C-shape section, as shown in figure 5. The B-field, directed toward the
TS axis, rotates implying the vertical drift of particles. This results in a vertical separation that reaches its
maximum in the middle of the TS. This feature makes it easy to select the negatively charged beam.

Figure 5: Schematic xz-view of the transport solenoid. At COL3 the magnetic field is directed along x axis, while at
COLS5 it is oriented towards z axis.

The particles move along a curved magnetic field line, hence they experience a centrifugal force due to the field
curvature. Therefore, they drift perpendicular to both the centrifugal force and B.

Stating the radius of curvature of the magnetic field lines R, then:

mvﬁ
Fcurv = FRC; (3)

and so

EF R.xB

— 2
Veurv = O_?M]Wﬂu (4)

The drift is proportional to the momentum and its direction depends on the particle charge. As a consequence,
negatively charged particles drift upwards due to the first curvature of the B-field, from TS1 to TS3, then they
drift downwards from TS3 to TS5. The behaviour of positively charged particles is opposite.

Because of the vertical drift, the alignment of elements in the TS becomes relevant since it could significantly
modify the space of possible stopped trajectory.

In particular, Col3 is the key element in the system alignment because it selects the beam charge but also
partially suppresses the antiproton background. The Col3 consists in two parts Col3u and Col3d. These
collimators select the charge of the beam through the opening position (figure 6), that is placed at the top in
the default configuration in order to have a = beam.



Figure 6: Pictures of the COL3 placed in the middle of the TS3.

A titanium window placed between the two parts of Col3 stops antiprotons with p < 100 MeV. A wedge shape
absorber located immediately after the window improves the antiproton rejection.

Figure 7 and 8 schematically show the trajectories of positively and negatively particles as they travel through
the TS:
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Figure 7: Trajectories of negatively charged particles inside the TS3.

The presence of the absorbers reduces the intensity of the muon beam of a few percent.

Most antiprotons are absorbed in the TS1, the remaining part hits the walls of the collimators due to
the drift. The fraction of antiprotons with p > 100 MeV/c manages to enter the Col3u and, if it is not
absorbed by the titanium window or by the wedge, it begins to drift downwards coming out of the Col3d.
In this way they exit the T'S and reach the stopping target where they annihilate.
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Figure 8: Trajectories of positively charged particles inside the T'S3.

Most uFs are stopped by col3u due to the downward drift. However, a fraction of the order of 10~2 passes
through and reaches the stopping target.



Coordinate distributions of ™ and u~ reaching the stopping target are expected to be different. In particular,
for u~ the distribution should be symmetric with respect to zero instead for the it it should be shifted upwards.
We expect to see all the uT concentrated in the upper part of the stopping target. These differences should
lead to same differences in the distribution of muon stopping point. These distributions will be shown and
commented in the Section 6.



5 Vertical misalignment

The antiproton background may be sensitive to the relative misalignment between the production target, Col3
and the stopping target along the y-direction.

Indeed, if the Col3 is in an upper position compared to the default one then more antiprotons can pass through
the collimators. Vice versa, if the Col3 is lower then less antiprotons can reach the stopping target, reducing
the background.

The vertical misalignment also affects the u+. The presence of the misalignment would change the ratio of the
stopping rates put /.

Therefore the misalignment could be measured from the ratio of the stopping rates y™ /. In addition, as the
coordinate distribution of u™ is asymmetric that should results in an asymmetry in the angular distributions
of the reconstructed positrons.

We expect to have all of the reconstructed tracks for positrons in the upper part of the tracker, as shown in
figure 9.
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Figure 9: Reconstructed track distributions for Michell decay of u* and ™. In orange the xy section of the tracker, in
red the xy view of the stopping target and in red the xy view of the beam spot. The dashed line are the recontructed
tracks of electrons (left) and positrons (right).

We define:
Py
t = —=; 5
9(¢) P (5)

Where p is the momentum vector of the reconstructed track in the point of closest approach.

The radius of the helix track is:

_ p1(GeV)

B(T)q03 d=R+dy = Xc=dxcos(d) Ye=dxsin(e); (6)

where dy has been defined in Section 2; d is the distance between the axis origin and the center; (X., Y;) are
the centre coordinates.
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Figure 10: Event display of a reconstructed conversion electron track. In green the xy section of the tracker. The red
circle is the Monte Carlo simulated track and the red segments are the straw hits of the particle.

An asymmetry in the vertical distributions of u™ stops should lead to a wave-shaped ¢ distribution of the
reconstructed positron tracks. The vertical misalignment can be estimated by the amplitude.



6 Results and comments

We use the Mu2e simulation framework to estimate the sensitivity of the asymmetry to the vertical misalignment.

108 proton interactions in the production target have been simulated. The Monte Carlo simulation predicts the
ratio of the stopping rates equal to u*/u~ =2 x 1073,

The total number of put which stopped in the stopping target was ~ 600, to simulate higher statistics of
ut — ev, v, decays each stop pT has been reused 200 times. The number of stopped =~ was 500 times larger
than pT hence resamplig was not required. The magnetic field in the detector solenoid to reconstruct the
p ~ 50 MeV/c positrons and electrons has been reduced to B =0.57T.

The following figures show the distributions of interaction vertex coordinates for ™ and p™.
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Figure 11: Distribution of x-coordinate of interaction vertices for p~.
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Figure 12: Distribution of x-coordinate of interaction vertices for .
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The distribution of x-coordinate of interaction vertices for u~ presents an unexpected asymmetry. The distri-
bution of uF also appears asymmetric. The large statistical fluctuations in figure 12, due to oversampling, make
it difficult to derive a conclusion.

A structure around x=0, visible in figure 11, is due to an opening r ~ 2 ¢m in the center of the stopping target.
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Figure 13: Distribution of y-coordinate of interaction vertices for p~.
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Figure 14: Distribution of y-coordinate of interaction vertices for puT.

As expected, the distribution of y-coordinate of u* stops (figure 14) shows an asymmetry, all ™ stops are
concentrated in the upper part of the stopping target.

For p—, the y-distribution is more symmetric than the x-distribution, but it is still possible to observe a small
asymmetry (more particle in the upper part of the ST).

The asymmetries of the puF and p~ distributions are not observable. The reconstructed parameters for e* tracks
should be reflect the same asymmetries.

Figure 15 and 16 show the distributions of the coordinate centre of the reconstructed tracks for e*(6).
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Figure 15: Distribution of z., x-coordinate of reconstructed track centre for e™.
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Figure 16: Distribution of y., y-coordinate of reconstructed track centre for e .

Asymmetry of the distribution in figure 11 is reflected in the distribution of electron xc. The origin of this
asymmetry is under investigation.
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Figure 17: Distribution of z., x-coordinate of reconstructed track centre for et.
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Figure 18: Distribution of y., y-coordinate of reconstructed track centre for e™.

The x-distribution for positrons is more symmetric than the electrons one. The y-distribution shows that the
most part of the positrons trajectories are contained in the upper half of the detector.

Figure 17 and 18 show that the parameters of the reconstructed trajectories are sensitive to the initial asymmetry
of the production vertices and therefore to the misalignment of the beamline.

The beamline misalignment should affect the asymmetry of the distributions of ut stops and through that
asymmetry of the distributions of the reconstructed track parameters.

Even better way to study the asymmetry is to study the angular distributions. Figure 19 shows the distribution
of the reconstructed ¢ angle, introduced in Section 5, for electron tracks.
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Figure 19: ¢ distribution for e™.

Instead of the flat distribution, figure 19 shows a wave with a maximum around 7 which has the same origin as
the offset z. distribution for electrons in figure 15.

250

200

150

f[II|III]|IfII|I

100

50

o
Mo
(]
&
w
o

Figure 20: ¢ distribution for e™.

Shown in figure 20 the ¢ distribution for the positrons shows a wave with a maximum around 7 /2 corresponding
to a vertical offset distribution for the positron production vertices (figure 18).

Note, that the maximum and the minimum of the distribution are not exactly at /2 and 37/2 due to the
z.~asymmetry shown in figure 17. The difference between the maximum and the minimum is a measure of the
asymmetry and therefore is sensitive to the vertical misalignment.
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7 Conclusions

In conclusion, we have shown that the asymmetries in the reconstructed parameters of electrons and positrons
tracks from p — evv decays are sensitive to the effects of the beamline misalignment. These asymmetries could
be used to study the vertical misalignment of the beamline, which is needed for the antiproton background
estimates.

An initial study has found an unexpected asymmetry of the z. distribution of the u~ stops. This asymmetry
could be caused to the reduced magnetic field, which is presently under investigation.
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