Fermilab **ENERGY** Office of Science

Antiproton background and the vertical misalignment of the Mu2e beamline

Giulia Nigrelli Supervisor: Pavel Murat Final presentation 21 September 2022

In partnership with:

Outline

- Mu2e signal and backgrounds
- **o Beam transport**
- **o** Antiproton background and vertical misalignment of the beamline
- **o** Preliminary results and conclusions
- Plan for the future

di Pisa

Mu2e signal and backgrounds

- > Mu2e will search for a neutrinoless conversion $\mu^- \rightarrow e^-$.
- > Main backgrounds:
- **RPC Radiative capture of pions**
- Antiprotons
- DIO Decay in orbit of Muons
- Cosmic rays
- \succ The estimated total background for Mu2e is $\sim 0.1/year$.
- > Need to prove experimentally that the backgrounds are small.

🛟 Fermilab

Antiproton Background

> Antiproton annihilation in AI, with the probability ~ 10^{-5} , produces a 105 *MeV/c* e^{-1} .

> Expected antiproton background is $\sim 0.01/year$.

The cross section angular dependence is not very well known.

Antiproton production in proton tantalum interaction near 10 GeV/c.

UNIVERSITÀ

DI PISA

Transport solenoid (TS)

- Particles follow helical trajectories in the TS.
- Due to the shape of TS the magnetic field is curved.
- Localy the magnetic field inside the TS is directed toward the TS axis.
- A collimator placed in the middle of the TS blocks the +ve charged particles.
- > Most of \overline{p} hit the absorber, collimators and cryostat.

🛟 Fermilab

Trajectory of a negative particle

- Drift proportional to momentum and direction depend on the charge.
- > Antiprotons with P < 100 MeV/c stopped by the titanium window.

Trajectory of a positive particle

 $\succ \mu^+$ are blocked by the collimator.

> A small fraction $\sim 10^{-3}$ of the μ^+ passes through the TS and reaches the ST.

Vertex coordinate distributions of μ^-

Hist/evt_0: X(Vertex)

Vertex coordinate distributions of μ^+

Hist/evt_0: X(Vertex)

Vertical misalignment

> Antiproton background may be sensitive to the relative vertical alignment.

Number of antiprotons could increase/decrease depending on the direction of misalignment.

di Pisa

Vertical misalignment

> The beam spot in the ST and the system axis will misalign.

> Number of blocked particles by the collimator changes.

> Expect a change in the ratio of μ^+/μ^- stopping rates.

Angular asymmetry

> Any asymmetry in the stopped μ should cause an asymmetry in the reconstructed observables of *e*.

Fermilab

ϕ distribution

φ is the angle between x-axis and d.

di Pisa

Beam transport simulation

> Expected ratio $^{\mu+}/_{\mu-} = 3 \cdot 10^{-3}$ in B = 1 T.

 $> 10^8$ proton interaction in the production target.

 $> 2 \cdot 10^5$ mu+ and mu- decays.

> Rate $^{\mu+}/_{\mu-} = 2 \cdot 10^{-3}$ in B = 0.5 T.

Track center coordinate distributions for e^-

- Asymmetry in X vertex distribution cause an asymmetry in Xc distribution.
- Not clear how the B field could explain it.

Yc distribution more symmetric than Xc distribution.

🛟 Fermilab

ϕ distribution for e^-

16 09/21/2022 Giulia Nigrelli | Final Presentation

Track center coordinate distributions for e^+

Xc distribution is more symmetric compared to e- distribution.

Expected asymmetry in the Yc distribution.

ϕ distribution for e^+

Conclusions

- Observed the expected asymmetry in the phi distribution for e+.
- There could be more asymmetries in the beam that can cause asymmetries in the reconstructed track.
- > The beam displacement in X could be on of those.
- Ready to proceed with the misalignment study.

Study the sensitivity of e+ and e- asymmetries to vertical misalignment of the beamline.

Study effect of the vertical misalignment on the antiproton background.

THANKYOUFOR YOUR ATTENTION!

di Pisa