

Proton track vs shower reconstruction and BDT variables in the ICARUS detector

Clara Saia Italian Summer Student Program @ FNAL – Final reviews 2022 21 September 2022

ICARUS: Imaging Cosmic and Rare Underground Signal

Short-Baseline Neutrino Program at Fermilab

🗲 Fermilab

ICARUS is the Far Detector in the Short Baseline Neutrino Program (SBN) at FNAL.

2 09/21/22 Clara Saia | Proton track vs shower reconstruction and BDT variables

ICARUS

Physics 'goals

LAr TPC (Liquid Argon Time Projection Chamber)

Candidate v_e CCQE vs v_μ CCQE

Candidate v_e interaction from NuMI

‡ Fermilab

A well reconstructed $\nu\mu$ CCQE event on the event display – MC simulated data

5

Some particles in our detectors choose the «shower path», others the «track path»

BDT (Boosted Decision Tree)

Proton: topology of cut

In order to investigate why the BDT particle identification fails, I'm looking at protons dividing reconstructed events in different categories. If there is more than on proton, I look at the most energetic one

Type of Protons Events	Number	Percentage	
Found only in the reconstructed tracks	2990	80,0%	\checkmark
Found only in the reconstructed showers	158	4,2%	X
Found both in reconstructed tracks and showers*	463*	12,4%	$\checkmark X$
Not reconstructed at all	127	3,4%	XX
Total	3738	٨	

🗲 Fermilab

*of which **218 have most of their energy reconstructed as a shower**, meaning their <u>best</u> <u>match is a shower</u>

Example of Cut: only match is a shower – MC simulated data

Example of Cut: only match is a shower – MC simulated data

🛟 Fermilab

Example of Cut: only match is a shower – MC simulated data

We can look at the reconstruction as a **track** for this sample.

‡ Fermilab

What has been done? Look for a sample of "good events" as a reference to compare the BDT's variable of the difference cut topology

Type of Protons Events	Number	Percentage	-
Found only in the reconstructed tracks	2990	80,0%	→ Is this
Found only in the reconstructed showers	158	4,2%	- the right
Found both in reconstructed tracks and showers*	463*	12,4%	cnoice ?
Not reconstructed at all	127	3,4%	
Total	3738	١	

Example of Cut: only match is a Track – MC simulated data

‡ Fermilab

Only match is a Track – MC simulated data

What has been done? Look for a sample of "good events" as a reference to comparing the BDT's variable of the difference cut topology

Type of Protons Events	Number	Percentage	-
Found only in the reconstructed tracks	2990	80,0%	→ Is this
Found only in the reconstructed showers	158	4,2%	- the right
Found both in reconstructed tracks and showers*	463*	12,4%	cnoice ?
Not reconstructed at all	127	3,4%	
Total	3738	١	

What has been done? Look for a sample of "good events" as a reference to comparing the BDT's variable of the difference cut topology

Type of Protons Events	Number		
Found only in the reconstructed tracks	2990		-
Reconstructed proton length == reconstructed muon length	883		-
Muon not reconstructed as a track	25		-
Completeness and Purity < 90% for proton	899		-
Completeness and Purity < 90% for muon	164		=
Good Sample:	1019	-	Good Events

‡ Fermilab

*the distributions are normalized

Proton: topology of cut

Type of Protons Events	Number	Percentage	
Found only in the reconstructed tracks	2990	80,0%	
Found only in the reconstructed showers	158	4,2%	Match only as a showe
Found both in reconstructed tracks and showers*	463*	12,4%	
Not reconstructed at all	127	3,4%	
Total	3738	١	

Angle between muon and proton: 2.55302 radians

‡ Fermilab

Run 11 SubRun 18 Event 8 (best match is a shower) - MC simulated data

The red particle is the proton reconstructed as a shower

🗱 🛟 Fermilab

23 09/21/22 Clara Saia | Proton track vs shower reconstruction and BDT variables

‡ Fermilab

11:18:12 Vertex Distance:0.03 DifferenceOpenAngle:1.02

🗳 Fermilab

- Looked to a Set of MC simulated in order to clarify the proton reconstruction (as a shower or as a track)
- Looked at the BDT variables to understand the situation.

For the next few days:

- Look at the track fit and get **the calorimetry proton chi2** (a variable that looks at the dE/dx along the particle and calculates a chi2 comparison of the found dE/dx versus the <u>expectation</u> for different particles);
- Looking at the BDT variables for some sample of real data;

Thank you for your attention

Backup

Example of Cut: match at least a shower – MC simulated data

Example of Cut: only match is a track – MC simulated data

Track Score BDT

- The BDT uses 10 input variables:
 - Length estimate of length of the reco particle
 - Sliding Linear Fit: Estimate of difference with respect to a straight line (/ length)
 - Sliding Linear Fit: Estimate of largest gap on the 3 planes (/ length)
 - Sliding Linear Fit: Estimate of RMS w.r.t. the fit (/ length)
 - Vertex distance: Distance from interaction vertex (reco) to start of reco particle
 - Difference in "opening" angle & "closing" angle (from 2 points at beginning & end of particle)
 - Principal Component Analysis: secondary eigenvalue / primary (estimate of how linear)
 - Principal Component Analysis: tertiary eigenvalue / primary (estimate of how linear)
 - Charge: fractional spread (using spread in values and mean value)
 - Charge: fraction near the end of particle (using charge near end and total)

Track/Shower BDT Scores | B. Howard

🛟 Fermilab

Bruce Howard (FNAL) - 25 April 2022- Brief update on track vs shower BDT scores

[particle $j \rightarrow 4/6$, particle $k \rightarrow 3/3$]

For each true particle the **best match** is identified as the reconstructed track with the **highest energy** from the matched hits

11

References

[1] Chrisitan Farnese || 20 July 2022 || Neutrino Search with the Icarus Detector

[2] José I. Crespo-Anadón || 20 July 2022 ||The MicroBooNE Experiment

[3] B. Howard || 20 April 2022 || Neutrino hunting with ICARUS at Fermilab B

[4] B. Howard || 25 April 2022 || Brief update on track vs shower BDT scores

[5] P. Machado, O. Palmara, D. Schmitz || Annu. Rev. Nucl. Part. Sci. (1019). Doi: 10.1146

[6] A.P. Serebrov, R.M. Samoilov, M.E. Chaikovskii || Doi:10.48550

[7] F. Poppi || FNAL 55° Annual Users Meeting|| ICARUS spreads its wings

