
Flexible Pilot Jobs Framework for
Distributed High Throughput

Computing

Franco Terranova

Under the supervision of

Marco Mambelli

Fermilab Italian Summer School

Fermi National Accelerator Laboratory

Scientific Computing Division

ABSTRACT

Experimental particle physics has been at the forefront of analyzing the world’s largest

datasets for decades.

The high-energy physics (HEP) community was among the first to develop suitable

software and computing tools for this purpose.

GlideinWMS is a Glidein-based workload management system whose purpose is to

provide experiments like CMS at CERN, DUNE at Fermilab, and others, a way to

access and efficiently use vast amounts of computing resources.

This system wants to provide a simple way to submit jobs to a set of computing

resources, that will be provided to users behind the scenes.

Glideins are the pilot jobs executed on the worker nodes at the grid sites, performing

operations such as hardware detection, environment setup, and error handling.

After all these operations, they will launch the actual user job.

Many grid sites are supported, such as shared clusters, Google CE, and AWS.

My internship aimed to design and code a flexible pilot jobs framework that will

replace the one used by GlideinWMS, developing a modular and flexible skeleton of

the Glidein and adding further functionalities.

My project also focused on the application of machine learning techniques as support

to this management system.

ii

Contents

1 GlideinWMS 1

1.1 GlideinWMS Architecture . 2

1.2 Glideins . 3

1.3 Worker nodes . 3

2 Flexible and modular Glidein skeleton 4

2.1 glidein startup.sh modularization . 5

2.2 Bats tests . 7

2.2.1 Timeout feature . 7

3 External files management 8

3.1 Life-cycle phases of management . 9

3.2 Management priority . 10

3.3 Tarballs handling . 12

3.4 File types . 13

3.5 File transfer methods . 13

3.6 File versions conversion . 14

4 Job/Site matching problem 15

4.1 Dataset . 16

4.2 CPU time series analysis . 16

4.3 Memory time series analysis . 18

4.4 Failure Prediction . 18

4.4.1 Logistic Regression Model . 20

4.5 Score calculation . 21

Appendix A: AI techniques for the job/site matching problem 25

iii

Chapter 1

GlideinWMS

Grid computing is becoming very useful and popular for the scientific community

with high computing demands, like high energy physics (HEP).

High throughput computing (HTC) aims to provide an efficient and effective schedul-

ing of user jobs on top of computing resources.

Computing resources are distributed over many independent sites, and typically a

middleware layer is used for enabling communication and data management among

them. Distributed HTC aims to aggregate many unrelated HTC systems.

GlideinWMS is a Glidein-based workload management system whose purpose is to

provide a simple way to access the computing resources for the HEP community.

This system works on top of HTCondor and its main building blocks are Glideins, a

mechanism by which one or more remote resources temporarily join a local HTCondor

pool.

1

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

1.1 GlideinWMS Architecture

The GlideinWMS architecture is composed of different services, interacting with each

other as visible in Figure 1.1.

• Users submit jobs to the User Pool (HTCondor schedd process).

• The GlideinWMS Frontend polls the user pool to make sure that there are

enough workers to satisfy user jobs.

It then submits requests to the GlideinWMS Factory asking for the submission

of Glideins.

• The GlideinWMS Factory receives requests from the Frontend(s) and other

clients and submits the Glideins to the grid sites.

• The computing resources receive the Glideins and start an HTCondor startd

process that joins the User Pool.

• The user jobs run on the newly added startds.

Figure 1.1: GlideinWMS Architecture

2

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

The result is that users can submit regular HTCondor jobs to the local queue and

computing resources will be provided by the Glidein Factory behind the scenes.

All the burdens typically managed by the user, in terms of queues, grid entry points,

and provisioning of worker nodes are handled by GlideinWMS.

From the final user point of view, the user pool will just magically grow and shrink

as needed.

1.2 Glideins

A Glidein is a pilot job submitted on the worker node that acquires and prepares

the resources where the job will run, with a particular focus on hardware detection,

environment setup, and error handling.

The Glidein will finally start the job and monitor its execution.

The Glidein is requested by the Frontend, launched by the Factory on the worker

nodes, and once launched, it will join the virtual cluster and start accepting user jobs.

1.3 Worker nodes

A worker node is a machine managed by a resource manager characterized by its

resources (CPU, RAM, Disk, etc.).

Virtualization techniques are used in order to create the abstraction of virtual ma-

chines on top of the physical ones. These techniques ensure flexibility, scalability, and

safety, while creating significant cost savings.

Worker nodes used by GlideinWMS come from different sources, such as the Fermilab

Grid Computing Center, AWS, GoogleCE, and the Open Science Grid.

3

Chapter 2

Flexible and modular Glidein
skeleton

The Glidein structure is described by a single Bash script, whose purpose is to

handle the overall lifecycle of the Glidein.

Modular programming is a software design technique that emphasizes the separation

of functionalities of a program into independent and interchangeable modules.

Its goal is to split the code into separate parts, modules, defining their boundaries,

API, and minimizing the connections between elements in different modules.

Modularization techniques have been applied to the Glidein structure in order to go

towards a more flexible and modular structure.

These techniques make development quicker and easier, as smaller subprograms are

easier to understand, write, and design than larger ones.

4

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

2.1 glidein startup.sh modularization

glidein startup.sh is a Bash script describing the workflow of the Glidein.

It is a long shell script that performs the following operations:

• Downloads other scripts and binaries using HTTP

• Validates the node

• Prepares the environment, also installing user software if needed

• Configures Condor daemons (policies, security, proxies, etc.)

• The condor startd process is then launched

After the modularization of the script, a new structure has been highlighted, as shown

in the following structure tree.

The file’s name will provide information about the specific functionalities handled by

the script’s functions.

glidein startup.sh

do start all

spawn multiple glideins

setup OSG Globus

check file signature

parse arguments

prepare workdir

create glidein config

get data

source data

extract and source all data

main

glidein cleanup.sh

glidein cleanup

early glidein failure

glidein exit

utils crypto.sh

md5wrapper

set proxy fullpath

utils gs filesystem

dir id

5

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

copy all

add to path

automatic work dir

utils gs http

get repository url

add periodic script

fetch file regular

fetch file

fetch file try

fetch file base

perform wget

perform curl

utils gs log

print tail

usage

parse options

utils gs tarballs.sh

fixup condor dir

get untar subdir

utils log.sh

log warn

log debug

print header line

utils params.sh

params get simple

params decode

params2file

utils signals.sh

signal trap with arg

signal on die

signal on die multi

signal ignore

signal add child

signal set children

utils xml.sh

construct xml

extract parent fname

extract parent xml detail

basexml2simplexml

simplexml2longxml

create xml

6

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

2.2 Bats tests

Bats is a TAP-compliant testing framework for Bash.

It provides a simple way to verify that the UNIX programs behave as expected using

unit tests.

A Bats test file is a Bash script with special syntax for defining test cases.

Starting from the structure derived after modularization, a Bats test has been defined

for each module.

2.2.1 Timeout feature

The runtest.sh script of GlideinWMS is a runner script for the different tests, among

which also Bats tests.

A per-test timeout feature has been added to the script in order to avoid possible

problems of non-responding tests that could interrupt the execution of subsequent

tests.

A new timeout option that the user running the tests can set has been defined, and

this option will avoid this issue.

-k TOUT
sets a timeout of TOUT seconds for the execution of each test (BATS file).
A TERM signal is sent if the test is still running after TOUT seconds and
a hard kill (KILL signal) is sent 20 seconds after the previous signal if
the test did not end yet.

7

Chapter 3

External files management

The experiments running jobs on GlideinWMS can upload external files of different

types to help glidein startup.sh to do its tests and support their jobs. These files need

to be downloaded and managed during their execution.

The location, download/execution order, and attributes of these files need to be

specified. The Glidein startup script will pull these files, validate them and execute

any action requested (execute, untar, just keep them, ...).

Two XML configuration files will provide the information needed to manage these

files, frontend.xml on the Frontend side and GlideinWMS.xml on the Factory side.

In these XML descriptors, a files section will contain all the information needed.

Listing 3.1: XML files section example

<files>

<file absfname="filepath" relfname="filename" prefix="cron_prefix"

executable="boolean" after_group="boolean" period="seconds(int)" />

..

</files>

My modifications to the external files management consisted of the following improve-

ments:

• Execution of custom scripts during different parts of the life-cycle of the Glidein,

not only the setup

• Revised coordination of the list of custom scripts inside a life-cycle phase

• Definition of new files’ attributes

• Definition of new methods for transferring script files

8

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.1 Life-cycle phases of management

My first improvement focused on adding the possibility to deal with external files in

different phases of the life-cycle of the Glidein.

The new overall life-cycle phases for the possible management of files are the following:

• startup

• pre job

• after job

• cleanup

• periodic:period

Figure 3.1: Glidein’s life-cycle phases

Using the time attribute of the file tag, the user will be able to provide this informa-

tion:

Listing 3.2: XML files section example

<files>

<file .. time="time_phase1[, time_phase2, ..]" .. />

..

</files>

9

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Multiple comma-separated values can be provided if the same file has to be managed

in different life-cycle phases.

Two additional new possible phases have been suggested as ideas for future versions:

• failure:exit code

• milestone:code

With the first option, the user can decide to manage an external file in front of a

failure with a certain exit code.

With the second option, the user can set some milestones during the execution of

the job (using some provided well-known functions) and ask for the management of

external files in front of these milestones.

3.2 Management priority

Users may need to affect the management order of external files.

In the current version of GlideinWMS, the after group and after entry boolean flags

in the file’s attributes affect the files’ handling order.

My modifications want to provide a simpler way to allow the user to alter this order,

providing this possibility also inside a life-cycle phase of the Glidein.

With my modifications, the user will be able to set the priority attribute, specifying

a priority value using a string code representation or an integer representation.

Listing 3.3: files’ priority section example

<files>

<file .. priority="e-g-" .. />

<file .. priority="27" .. />

....

</files>

The following syntax meaning has been associated with the string code representation:

e: entry
g: group
+: after/post
-: before/pre
=: in that exact moment

10

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Order String code represen-
tation

Integer code represen-
tation

Factory pre entry e-[g-] 10
Frontend pre entry pre group e-g- 20
Frontend pre entry group e-g= 30
Frontend pre entry after group e-g+ 40
Entry e=[g-,g+,g=] 50
Frontend after entry pre group e+g- 60
Frontend after entry group e+g= 70
Frontend after entry after group e+g+ 80
Factory after entry e+[g+] 90

Table 3.1: Files’ priority ordering

The user can also choose to specify the priority value using the integer code repre-

sentation with an integer value in the range [0, 99].

The predefined integer values are purposefully chosen as multiples of 10, so that in-

termediate values can be used to control in a more granular way the file handling

order.

File: file_list

#

Version: 3.11.0

Time OrderedFileName RealFileName Type Period Prefix Id

##

startup 10_condor_vars.sh condor_vars.sh exec ..

startup 40_condor_file.sh condor_file.sh exec ..

Listing 3.4: Example of file descriptor

A global file descriptor is used internally to handle the ordering of files considering

both the life-cycle phase and the file priority.

11

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.3 Tarballs handling

The user can group files in a tarball and provide it to GlideinWMS, which is going

to handle it properly.

Listing 3.5: XML tarball files section example

<files>

<file type="untar:folder_name" cond_attr="cond_attr"

absdir_outattr="attr_name" .. />

</files>

The new format allows the user to specify the destination folder as a qualifier (by

default it will be the name of the tarball itself).

The user can also specify the types of files and all the information of files contained

inside a tarball, for them to be handled properly.

These files will not be downloaded, since this will happen only for the tarball in which

they are contained, but the proper values will be added in the file descriptor.

Listing 3.6: XML section example of files in tarballs

<files>

<file .. type="executable" tar_source="tar_filename" .. />

..

</files>

12

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.4 File types

After the overall improvement of the management of external files, new file types have

been defined.

• source files, including bash files to be sourced

• library:type, including library types to be used (e.g. library:shell)

New possible ideas about file types have been proposed.

• web files, to create custom web dashboards for different purposes, such as mon-

itoring the execution of the job.

The web group attribute can be used to let the user provide web files of different

web dashboards.

The Glidein would have to start a Web server and serve these pages.

Listing 3.7: XML web files example

<file .. type="web" web_group="group_name" .. />

• container:type, to let the user specify the information of custom containers that

will be launched during the execution of the Glidein. Note that the Glidein has

already the option to run a script in a users container. This additional type

would be to support custom containers, e.g. to run services.

3.5 File transfer methods

New possible methods have been proposed for transferring files:

• Git repository

• URL (FTP, Cloud Storage)

• Database access information

13

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

3.6 File versions conversion

We have to plan for upgrades and compatibility since both some internal formats

used by the Glidein and the configuration files changed. The GlideinWMS systems

have many Factories and Frontends talking together and providing different Glidein

components. It is unreasonable to expect all to upgrade at the same time. But it is

reasonable to ask to upgrade the Factories first. The main Glidein components come

from the Factory and we’ll be able to operate also with older Frontends if the new

Glideins can handle different versions of XML descriptor files.

Factory and Frontend operators have sometime long and complex XML configuration

files. We want to reduce their effort caused by upgrades. The operators will be

requested to convert the format to the new version when upgrading.

A converter script has been defined to let the user move to the new format.

Figure 3.2: File versions converter

14

Chapter 4

Job/Site matching problem

What if we can use artificial intelligence to predict what is the best site where the

Glidein should be spawned?

The Frontend, in fact, will have to choose toward which site the Glidein should be

launched.

Currently it will request Glideins on all sites that state to provide enough resources.

We aim to allocate the Glidein to the site that provides the largest amount of re-

sources while minimizing the probability of failure.

Some sites give information about the number of resources that are going to provide

for the job, while some others don’t.

The workflow we want to follow to solve the job/site matching problem is the follow-

ing:

• Predict the amount of CPU and Memory that is going to be provided by each

site: CPUProvided, MemoryProvided

• Consider only the sites for which the resources provided are enough for our job,

which means:

CPURequested ≤ CPUProvided

MemoryRequested ≤ MemoryProvided

• Calculate the probability of failure of each site: Pfailure

• Calculate a cumulative score that allows us to take this decision

More details about the analysis can be found in Appendix A.

15

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.1 Dataset

To perform our analysis, we considered the dataset hepcloud-classads-slots, available

through Kibana, containing different information about classads.

4.2 CPU time series analysis

A time series analysis was performed comparing different forecasting methods to pre-

dict the average total hourly CPU that a certain site could provide.

The analysis has been performed on the overall data, regardless of the site, to train

a general model that could generalize the site-by-site average total hourly CPU fore-

casting.

Figure 4.1: Average hourly total CPU time series

Exploring the time series with the auto-correlation function, a possible seasonality

with a period of 24 hours was highlighted.

Going towards the decomposition of the time series, the additive decomposition and

multiplicative decomposition were compared, choosing the one that was able to follow

more accurately the nature of the series, separating seasonality, from trend, and noise.

Additive decomposition: Xi = Ti + Si + Ei

Multiplicative decomposition: Xi = Ti ∗ Si ∗ Ei

By analyzing the residues of the two decomposition methods, the additive decompo-

sition seemed to provide better results.

Different forecasting methods have been compared:

16

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

• Holt-Winters method with additive decomposition

• Manually-created regression model for time series

• Yule-Walker method

• Least squares method

Among the different models, the Holt-Winters method and the Least squares method

seemed to achieve better results.

A cross-validation comparison and a residues analysis have been performed to deter-

mine the best method to filter our time series and forecast the next values.

After this comparison, the Least squares method was chosen as the forecasting method

for the next values of the time series.

Figure 4.2: Time series filtering and forecasting

17

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.3 Memory time series analysis

The same approach was used for the time series analysis of the data regarding the

memory allocation, where the Holt-Winters method seemed to provide the best re-

sults, with an additive decomposition and the following parameters:

Parameter Value

α 0.30
β 0.03
γ 0.70
Initial intercept 11352
Initial slope 10580

Table 4.1: Parameter choices for the Holt-Winters method

A regressive model was used to obtain the initial values of intercept and slope.

4.4 Failure Prediction

As previously mentioned, we also want to find a way to minimize the probability of

failure when we allocate a Glidein to a node.

Different probabilistic classification methods were compared to predict the failure of

a node in a certain site:

• Linear regression for classification

• Logistic regression

• Linear discriminant analysis

• Quadratic discriminant analysis

Past data regarding failures and non-failures of the Glidein has been analyzed to train

our supervised algorithm.

Among the features considered to train our classifiers, factors regarding the amount

of resources of the worker nodes and information about the time needed for the job

to be executed have been used.

During the training phase, all algorithms seemed to perform moderately and simi-

larly.

A K-Fold cross-validation and a site-by-site cross-validation were faced to determine

18

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

the best classifier, using as metrics the accuracy’s mean and standard deviation, and

the ROC curve.

In front of this comparison, it emerged that the linear regression method for classi-

fication performed quite badly, while other methods seemed to have similar metrics’

values.

A robustness analysis was performed by introducing wrong information to determine

how robust each model was.

Data was altered by flipping at each iteration the class value of a sample.

The model was trained on the altered data and its accuracy was tested on real data.

Figure 4.3: Models’ robustness comparison

The logistic regression method has shown a higher degree of robustness, needing a

higher number of values changed before losing a large amount of its accuracy.

19

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.4.1 Logistic Regression Model

A choice of a different threshold value than the default one provided by the model was

performed to improve the prediction of failures and achieve a good trade-off between

accuracy and sensitivity.

Figure 4.4: Accuracy/Sensitivity comparison

A probability threshold equal to 0.68 has been chosen, allowing the model to improve

decisively its sensitivity while losing a few percentages of accuracy.

The following results were achieved with the logistic regression.

Accuracy Sensitivity

0.81 0.93

actual
value

Prediction outcome

p n total

p′ 6554 486 7040

n′ 3626 15117 18743

total 10180 15603

Table 4.2: Accuracy, sensitivity and confusion matrix

20

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

4.5 Score calculation

A resources score taking into consideration the number of resources forecasted has

been defined as follows:

resources score = CPU−min(CPUs)
max(CPUs)−min(CPUs)

× 50 + Memory−min(Memories)
max(Memories)−min(Memories)

× 50

The CPU and memory values forecasted with the corresponding methods are scaled

in the range [0, 50] to give them the same weight.

The resources score will be a value ranging from [0, 100].

The overall score taking into consideration also the probability of failure will allow

this probability to decrease the resources score depending on its value.

score = resources score× (1− Pfailure)

The site with the highest score will then be chosen for the allocation of the Glidein.

21

CONCLUSIONS

An approach to solve the problem of the allocation of grid resources is to create a

homogeneous virtual private pool of computing resources and use a standard batch

system to manage them.

In order to gather resources, batch system components are packaged as pilot jobs and

sent to the Grid pools.

My project at Fermilab mainly regarded the modification of the pilot jobs structure,

providing a more elastic and personalizable skeleton, and the improvement its fea-

tures.

The following achievements were accomplished:

• Designed a flexible, modular, and customizable structure of the Glidein

• Added unit tests

• Redesigned the custom script management

• Applied AI techniques for the job/site matching problem

The modifications made to the design of the Glidein will be included in release 3.11.0

of GlideinWMS.

The other improvements will be considered in further releases.

22

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere and deep gratitude to my supervisor,

Marco Mambelli, working on the Scientific Computing Division, for his kind and

constant support during my internship project. It has been an absolute privilege to

work with him.

His valuable advice, critical criticism and active supervision encouraged me to sharpen

my research methodology and was instrumental in shaping my professional outlook.

I also want to express my gratitude towards Prof. Simone Donati and Prof.

Giorgio Bellettini, for providing such a wonderful environment filled with continu-

ous encouragement and support. I would also like to thank the entire group behind

the Fermilab Italian Summer School and the Fermilab’s Scientific Computing Divi-

sion for their constant encouragement and assistance they have provided me.

23

References

[1] GlideinWMS project, available at https://github.com/glideinWMS/

glideinwms

[2] GitHub PR for the Glidein modularization, available at https://github.com/

mambelli/glideinwms/pull/12

GitHub PR for the external files management modifications, available at https:

//github.com/glideinWMS/glideinwms/pull/210

[3] Job/site intelligent allocation, GitHub, available at https://github.com/

glideinWMS/contrib/tree/main/AIforJobSiteAllocation

[4] Marco Mambelli, “GlideinWMS Overview” presentation, available at https://

glideinwms.fnal.gov/presentations/intro/GlideinWMS.pdf

[5] GlideinWMS website, available at https://glideinwms.fnal.gov/doc.prd/

index.html

[6] GlideinWMS API Documentation, available at https://glideinwms.fnal.gov/

api/

[7] Development workflow, available at https://github.com/glideinWMS/

glideinwms/wiki/Development-Workflow

[8] Igor Sfiligoi, “Structural overview of the GlideinWMS,” Fermilab, (2008).

24

https://github.com/glideinWMS/glideinwms
https://github.com/glideinWMS/glideinwms
https://github.com/mambelli/glideinwms/pull/12
https://github.com/mambelli/glideinwms/pull/12
https://github.com/glideinWMS/glideinwms/pull/210
https://github.com/glideinWMS/glideinwms/pull/210
https://github.com/glideinWMS/contrib/tree/main/AIforJobSiteAllocation
https://github.com/glideinWMS/contrib/tree/main/AIforJobSiteAllocation
https://glideinwms.fnal.gov/presentations/intro/GlideinWMS.pdf
https://glideinwms.fnal.gov/presentations/intro/GlideinWMS.pdf
https://glideinwms.fnal.gov/doc.prd/index.html
https://glideinwms.fnal.gov/doc.prd/index.html
https://glideinwms.fnal.gov/api/
https://glideinwms.fnal.gov/api/
https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow
https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow

Appendix A: AI techniques for the
job/site matching problem

Artificial intelligence can be a key instrument for the prediction of the best allocation

of jobs to grid sites.

We want to allocate the Glidein to the site that provides the largest amount of

resources while minimizing the probability of failure.

In this appendix, a more detailed comparison of time series forecasting methods of

CPU and Memory, and more details about the classifiers’ comparison are reported.

A.1 CPU Time Series Analysis

The autocorrelation function of the time series has been explored to discover a pos-

sible seasonality in the time series.

Figure 4.5: Auto-correlation function

Seasonality with a period of 24 hours was suggested by the analysis.

Highlighted the possible period of the time series, its decomposition has been per-

formed.

25

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

Figure 4.6: Decompositions comparison

To determine the best decomposition structure, the residues of the two models were

analyzed and compared.

Figure 4.7: Decompositions’ residues’ comparison

Considering the scatter plot, the ACF, the histogram (by overlapping the empirical

density and the theoretical gaussian density), the Q-Q plot, and the metrics high-

lighted in Table 4.3, the additive decomposition seemed to be the best decomposition

method.

Non-explained variance Shapiro-Wilk test p-value Autocorrelation function’s variability

Additive decomposition 0.62 0.002 0.24

Multiplicative decomposition 0.64 1e-8 0.23

Table 4.3: Decompositions’ residues’ comparison

26

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

A.1.1 Forecasting methods

Different forecasting methods have been compared.

The Holt-Winters method with additive decomposition highlighted the following op-

timal values for the parameters:

Parameter Value

α 0.32

β 0

γ 0.72

Initial intercept -0.74

Initial slope 5.43

Table 4.4: Parameter choices for the Holt-Winters method

The initial intercept and slope were obtained with a linear regression.

A range of parameters close to the ones provided by the model was explored, but

still, the previous values have been chosen to go on with the analysis.

The partial auto-correlation function of the time series was explored to build a manual

regression method.

Figure 4.8: Partial ACF

The PACF highlighted two lags as possible interesting previous values to forecast the

next one.

A manual linear regression method has been trained, though rejected due to the low

value of the coefficient of determination.

Furthermore, the Yule-walker regression method has been considered to try to forecast

our time series. Not realistic results were though obtained with this method.

27

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

The Least squares method determined that 23 lags could be the optimal number of

lags to consider.

The Holt-Winters method and the Least squares method were compared using a

residues analysis and a cross-validation, considering the mean square error as metric,

and the Least squares method has been the best method to forecast the average total

hourly CPU.

Figure 4.9: Cross-validation comparison

Mean square error

HW method 47.40

LS method 36.96

Table 4.5: Mean square error CV comparison

A.2 Memory Time Series Analysis

The time series analysis of the average total hourly memory was performed using

the same methodology as the one shown in the previous chapter, determining the

Holt-Winters method with additive decomposition as the best forecasting method.

28

Flexible Pilot Jobs Framework for Distributed High Throughput Computing

A.3 Failure classification

Different probabilistic classifiers have been compared for predicting the failure of the

Glidein.

Performing a cross-validation comparison and using as metrics the accuracy and the

ROC curve, the following results were obtained.

Accuracy’s Mean Accuracy’s Std AUC

Linear Regression 0.33 0.07 -

Logistic Regression 0.84 0.04 0.90

Linear Discriminant Analysis 0.83 0.04 0.91

Quadratic Discriminant Analysis 0.85 0.04 0.90

Table 4.6: CV comparison

Figure 4.10: ROC Curves Comparison

After a site-by-site cross-validation and a robustness comparison, the logistic regres-

sion was chosen as the best classification method for our purpose, even if performance

site-by-site were much more volatile than the general case, as indicated by the stan-

dard deviation.

Accuracy’s Mean Accuracy’s Std

Logistic Regression Method 0.75 0.23

Table 4.7: Site-by-site CV comparison

As previously stated, the probability threshold has then been varied in order to obtain

a better trade-off between accuracy and sensitivity.

29

	GlideinWMS
	GlideinWMS Architecture
	Glideins
	Worker nodes

	Flexible and modular Glidein skeleton
	glidein_startup.sh modularization
	Bats tests
	Timeout feature

	External files management
	Life-cycle phases of management
	Management priority
	Tarballs handling
	File types
	File transfer methods
	File versions conversion

	Job/Site matching problem
	Dataset
	CPU time series analysis
	Memory time series analysis
	Failure Prediction
	Logistic Regression Model

	Score calculation
	Appendix A: AI techniques for the job/site matching problem

