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Abstract

This report deals with the theory of transmon qubits in general, also focusing on the SQUID and the
functioning of a Josephson junction. The interaction of the qubit in a cavity with the quantized

electro-magnetic field is then treated. After this introduction whose goal is to contextualize the work that I
actually did, I will talk about the 2D qubits that we have built. The problem of etching and "patching"

will be dealt with in detail, reporting the results obtained in the laboratory. Finally, I wanted to conclude
by addressing the concept of measurement of a qubit in a cavity only at a theoretical level. I conclude
everything with a "Feynman treatment" of the cavities which in my opinion is really very interesting.

1 TRANSMON QUBIT; [1] [2] [3] [4]

1.1 JOSEPHSON JUNCTION THEORY

Figure 1: Structure of Josephson junction (JJ)

Josephson junction is the case of superconductor-insulator-superconductor, besides the quasiparticle tun-
neling current, we can have also a supercurrent tunneling due to the Cooper pairs transfer between the two
superconductors. This current, called Josephson current, can be observed in SIS junctions with extremely
thin insulating layers (10-15 Å).
In this situation, the coupling between the two superconductors is sufficiently strong that a definite phase
relationship between pairs on opposite sides of the insulating barrier can be maintained.
In particular the direct supercurrent of pairs , for currents less than a certain value I j , flows with zero voltage
drop across the junction (dc Josephson junction).
Consider two superconductors (of the same or different materials) separated by a thin insulating barrier of
width b as in the figure below.1

Figure 2: 1D representation of a Josephson junction with the trend of the wave function

1It’s very important to note that for this discussion we’ll use the Ginzburg-Landau theory, since this theory is very useful for the
treatment of the inhomogeneities
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If the insulating barrier is infinitely thick we can guess that the order parameter √(z) within the barrier can
be expressed in the form

√(z) =√1e°Øz +√2eØ(z°b) 0 < z < b (1)

With √i = |√i |e°iµi and the parameter Ø characterizes the damping within the barrier.
The Schrodinger equation of the system is the following

ifl d
d t

∑
√1

√2

∏
=

"
qc V

2 K
K ° qc V

2

#∑
√1

√2

∏
(2)

where the parameter K characterizes the tunneling between the barriers, and qc is the charge of the Cooper
pair.
Solving this equation leads to the following results

I =I0 sin∞

d∞
d t

= 2eV
fl = 2ºV

©0

(3)

where I0 depends on the geometrical and physical properties of the junction and ∞= µ1 °µ2 (phase differ-
ence across the junction).
One can then infer that the effective inductance of the Josephson junction is :

V = L
d I
d t

°! ©0

2º
d∞
d t

= LI0
d∞
d t

cos(∞)

L = ©0

2ºI0 cos(∞)
°! L =

LJ0

cos(∞)

(4)

where©0 is the flux quantum and we define L J0 as the Josephson junction inductance at zero current. It can
be shown that the Josephson junction inductance is a function of the current:

I = I0 sin∞°! (
I
I0

)2 = sin2∞

(
I
I0

)2 = 1°cos2∞

(5)

Therefore

L =
L J0q

1° ( I
I0

)2
(6)

1.2 SQUID

One can use two JJs (assumed to be identical) in a loop to get a tunable JJ where the critical current can
be tuned by passing an external flux ©ext through the loop. Consider a superconducting circuit with two
Josephson junctions in parallel.
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Figure 3: Illustration of a circuit forming a SQUID. C1and C2 are two circuits inside the ring

For simplicity we assume that both junctions have the same critical current I0, that the magnetic flux
through the junctions is negligible, and the thickness of the superconducting samples is much larger than
the magnetic penetration depth.
The phase differences across the junctions P and Q are ∞p = µ(P2)°µ(P1) and ∞q = µ(Q2)°µ(Q1).
The total current flowing in the circuit is

I = I0(sin(∞p )° sin(∞q ))

= 2I0 sin(
∞p +∞q

2
)cos(

∞p °∞q

2
)

(7)

Inside of the superconductors Js = 0 thus in the Ginzburg-Landau(GL) equation, that we remember to be: :

Js(r ) = |√(r )|2[
e§fl
m§ rµ(r )° e§2

m§c
A(r )] (8)

we can put Js = 0 and we get

rµ(r ) =° 2e
flc

A(r ) (9)

Now we calculate the integrals along C1 and C2

C1 =) µ(P2)°µ(P1) =° 2e
flc

ZP2

Q2

~A(~r ) ·d~l

C2 =) µ(Q2)°µ(Q1) =° 2e
flc

ZQ1

P1

~A(~r ) ·d~l

(10)

Summing up the two contributions

µ(P2)°µ(Q2)+µ(Q1)°µ(P1) =° 2e
flc

I
~A(~r ) ·d~l (11)
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therefore we find

∞p °∞q =° 2e
flc
©(~B) =°2º

©(~B)
©0

(12)

Inserting this equation in (7), we obtain :

I = 2I0 cos(º
©(~B)
©0

)sin(
∞p +∞q

2
) (13)

This expression has its maximum value when

sin(
∞p +∞q

2
) = 1 (14)

so ,

Imax = 2I0

ØØØØØcos(º
©(~B)
©0

)

ØØØØØ (15)

Since the maximum supercurrent is a periodic function of ©(~B) and fluctuates between maxima and min-
ima for flux variations as tiny as ©0

2 , extremely small magnetic fields can be precisely measured.
The critical value Imax (©) denotes the greatest amount of current that can pass through the device without
dissipating and with a zero potential voltage across the SQUID.
Let’s now examine the overall energy held in a JJ (naturally, a JJ also has some small capacitance, but for
our purposes and simplicity we ignore this since we are eventually going to shunt the JJ to a much larger
capacitor to make a transmon qubit). The fact that

dU
d t

=V I

U =
Zt

°1
I (t 0)V d t 0

= I0©0

2º

Zt

°1
sin(±)

d±
d t

d t 0

= I0©0

2º
[1°cos(±)]

¥ E J [1°cos(±)]

(16)

we have assumed that there was no current at t = °1.

1.3 HOW TO TRANSFORM AN LC CIRCUIT INTO AN ANHARMONIC OSCILLATOR

To be able to build a qubit we must be able to build a system whose energy levels are quantized but with
energies of levels that are not all equal.
In fact, if it were enough to simply have a system with equal discretized energies, it would be enough to take
a superconducting LC circuit with very low T (temperature) so that only the lowest levels can be considered
populated. Considering the two lower energy levels as qubit.
However, this is not possible.
The energy levels of an LC circuit in quantum regime are all equally spaced, so we cannot work individually
on the various levels.
The goal then is to introduce some anharmonicity in this circuit which, however, does not generate dissipa-
tion.
Here is the importance of the JJ, it works as a non-linear inductance without adding dissipation.
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Figure 4: Transmon circuit

The hamiltonian of this circuit is :

H = Q2

2C
+E J [1°cos(±)] (17)

if we write the total charge of the capacitor as a function of the number of Cooper pairs we get:

H = (2em)2

2C
+E J [1°cos(±)]

= 4EC m2 +E J [1°cos(±)]
(18)

Where m is the number of Cooper pair, and EC is the charging energy. Similar to quantization of harmonic
oscillator, here m and ± are canonical momentum and position for the transmon circuit. Therefore, we
may transition to the quantum regime by promoting them to operators and then we arrive at the quantum
hamiltonian.

H = 4EC m̂2 +E J [1°cos(±̂)] (19)

To study the eigenvalues and eigenvectors of this Hamiltonian, let’s put ourselves in the regime E J >> EC i.e.
±<< 1. In fact we can expand in this regime the above hamltonian and we obtain the anharmonic oscillator
:

H = 4EC m̂2 +E J
±̂2

2
°E J

±̂4

24
(20)

without getting lost in mathematics, we define in a similar way to the harmonic oscillator, operators of
creation and destruction obtaining [1] 2 :

Ĥ = (
p

8E J EC °EC )b̂†b̂ ° EC

2
b̂†b̂†b̂b̂

= (!J °EC )b̂†b̂ ° EC

2
b̂†b̂†b̂b̂

=!01b̂†b̂ + Æ

2
b̂†b̂†b̂b̂

(21)

We get a hamiltonian for an anharmonic oscillator with an anharmonicity Æ
2º = - EC and a lower energy

transition !01.

2The mapping between this model and the LC circuit was done as follows 4EC °! 1
2C , E J

2 °! 1
2L and !J =

p
8E J EC °! !LC = 1p

LC
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Figure 5: energy levels with JJ versus harmonic oscillator energy levels [1]

Therefore, under certain conditions of anharmonicity, we can consider our system as a two-level system
described by the Hamiltonian:

Ĥq =°
!q

2
æ̂z (22)

where !q =!01.

1.4 QUBIT-CAVITY INTERACTION

We now want to deal with the case of a qubit inserted in a cavity and study the total system.
Before starting, if we solve Maxwell’s equations inside a cavity with given boundary conditions, we obtain a
precise relationship that must satisfy the wave vector k . In general, we therefore say that the modes of the
electro-magnetic field in a cavity are quantized.
We consider for our discussion only the lowest frequency mode of the field and that the qubit is placed in
the center of the cavity. Given L the length of the cavity, supposing the characteristic dimensions of the
qubit much smaller than L, we can assume that the qubit interacts only with the field at the point L

2 (we are
imagining the field in a classical way).
The interaction between the qubit and the electric field is a dipole interaction which can be written with the
following Hamiltonian :

Ĥi nter acti on =°d̂ · Êx
°L

2
, t

¢
(23)

where d̂ is the operator electric dipole of the qubit. Suppose the dipole is aligned with the field in the x
direction, so d̂ = dxæx , where dx is the magnitude of the qubit dipole. We can write d̂ as:

d̂ = dx (æ̂++ æ̂°) (24)

Where æ̂+ ( æ̂°) are the raising (lowering) operators for the qubit.
Recalling now that the electric field in second quantization is proportional to Ê / (â† + â), we can rewrite
the interaction hamiltonian like :

Ĥi nter acti on =°g (æ̂++ æ̂°)(â† + â) (25)

where g is equal to dxE0 to quantify the interaction strength.
Now we have all the pieces to describe the combined qubit-cavity system.
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Ĥtot = Ĥqubi t + Ĥem + Ĥi nter acti on (26)

so,

Ĥtot =!c (â†â + 1
2

)°
!q

2
æ̂z ° g (æ̂++ æ̂°)(â† + â) (27)

We try to solve this Hamiltonian using the basis of the bare eigenfunctions.
We neglect the terms of the interaction that do not conserve the number of excitations, that is, we put
ourselves in the limit in which it is permissible to do the rotating wave approximation (RWA). So we obtain :

Ĥtot =!c (â†â + 1
2

)°
!q

2
æ̂z ° g (â†æ̂°+ âæ̂+) (28)

This is called Jaynes-Cummings hamiltonian.
Even if this hamiltonian is described by a semi-infinite matrix, it is still possible to diagonalize it with the
basis chosen exactly.

HJC =

0
BBBBBBBB@

1
2!c °

!q

2 0 0 0 0 0
0 3

2!c °
!q

2 g 0 0 0
0 g 3

2!c +
!q

2 0 0 0
...

0 0 0 0 (n + 1
2 )!c °

!q

2

p
n +1g

0 0 0 0
p

n +1g (n + 1
2 )!c +

!q

2

1
CCCCCCCCA

(29)

We can see that the hamiltonian is block-diagonal and all the blocks follow a general form (except the first
block which has only one element 1

2!c °
!q

2 corresponding to the absolute ground state of the system). So
we only need to diagonalized individual blocks and the resulting eigenvalues of each block, indeed, are the
eigenvalues of the entire hamiltonian.
Leaving aside mathematics, we obtain the eigenvalues from the diagonalization of the various blocks

Eg =°¢
2

E± = (n +1)!c ®
1
2

q
4g 2(n +1)+¢2

(30)

Where ¢ = !q °!c . The eigenstates associated with each of these eigenvalues are called the dressed states
of the qubit and cavity

|0,°i=
ØØg

Æ
|0i

|n,°i= cos(µn)
ØØg

Æ
|n +1i° sin(µn) |ei |ni

|n,+i= cos(µn) |ei |ni+ sin(µn)
ØØg

Æ
|n +1i

(31)

where µn = 1
2 tan°1 (2g

p
n +1/¢). Basically these states are an overlap of where the excitement lies between

the two systems.
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1.5 DISPERSIVE APPROXIMATION

Now we focus only on the situation of dispersive regime that is ¢ >> g . We do this because it will help us
to understand later how the measurements on the qubit are made, so this part is very important. In such
situations, the interaction is relatively weak. Consider the unitary transformation

T̂ = e∏(æ°a†°æ+a) (32)

where ∏= g
¢ . If we apply this transformation to the JC hamiltonian and we stop at the second order devel-

opment since we are in the dispersive regime we get:

Ĥdi s =!c â†â ° 1
2
!q æ̂z °

g 2

¢
â†âæ̂z (33)

We can re-arrange the terms and we obtain

Ĥdi s = (!c1°¬æ̂z )â†â ° 1
2
!q æ̂z (34)

where ¬= g 2

¢ .
So the beautiful result obtained is that depending on the state of our qubit the frequency of the cavity shifts
by ±¬.
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2 FABRICATION; [5] [6] [1] [7]

We start by choosing the materials. To reach higher coherence time we choose sapphire wafers because
their loss tangent is less than silicon’s.
The total energy decay rate such as a qubit can be understood as the sum of decay rates through all coupled
loss channels. Equivalently, if the fraction of energy stored in each lossy element is known (the partecipation
ratio pi ), then the qubit decay rate can be related to an intrinsic quality (or loss tangent t an(±i )) of these
elements:

∞=
X

i
∞i +°=!

X

i
pi tan(±i )+° (35)

Here, i is the index indicating different spatial regions; pi is the participation ratio (PR) of the i-th region,
representing the proportion of the electric energy stored in that part to the total electric energy of the qubit;
and tan t an(±i ) characterizes the intrinsic dielectric loss of the i-th region and !

2º is the qubit mode fre-
quency and ° accounts for ther types of loss mechanism, e.g. radiative decay. I also include the formula
used to determine the participation ratio for completeness’ sake.

pi =
1
2≤i

Rti
0 d t

R
Si
|~E |2d s

Utot
(36)

where ti , ≤i , Si and ~E are the thickness, dieletric constant, in-plane geometry, and electric field of the i-th
interface region, and Utot is the total electric energy of the qubit.
It’s important to remember that sapphire functions well as a dielectric.
In this section, we’ll look broadly at Josephson junction fabrication techniques. The following two clean-
room fabrication runs were performed to make electrical contact between the niobium pads and the junc-
tion in a 2D qubit without the usage of ion milling.
Then, using an impromptu sample, we investigated the effects of milling on various materials (niobium,
aluminum, and sapphire).

2.1 JOSEPHSON JUNCTION FABRICATION

Aluminum on a sapphire wafer can be vaporized using an electron beam evaporator, which allows for di-
rectional evaporation, to create a Josephson junction.
The double angle evaporation method, which makes use of evaporation directionality, is what we use to
fabricate JJ.
The spin coating of e-beam resist on a sapphire wafer, the deposition of a thin aluminum layer, e-beam
lithography, development, pre cleaning, double angle evaporation, lift off, and post cleaning are typical
steps in the JJ fabrication process.
E- beam resist: we use a stack of two resists for junction fabrication. The bottom layer (MMA) is more sen-
sitive than the top layer (PMMA) to e-beam exposure.
The reason for this choice of resist staking is to achieve a wide undercut which is convenient for clean lift-off
as depicted in Figure 6a-6b.
It also enables for a suspended bridge needed for junction fabrication (Figure 6c).
The resist layers can be coated on the substrate by spin-coating. The thickness of the layers is controlled
by the spinning velocity, the total time of spinning, and the viscosity of the resist. In particular we spin
coat MAA(8.5)MAA copolymer EL11 at 4000 rpm (to get ª 500 nm of thickness) and than we spin coat 950K
PMMA a A4 at 4000 rpm (to get ª 200 nm of thickness).
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Figure 6: a With a single layer of resist, it is often difficult to get small and clean patterns. Mainly because
the wall of the resist may also get deposited which connects top layers to the bottom layers which make it
difficult to properly lift-off the resist without peeling off the actual pattern. b This issue can be avoided by
using two layers of the resist. The top layer provides sharp edges as a mask and the bottom layer act as a
spacer. The proper amount of undercut aids the liftoff process. c Moreover, the undercut of the lower resist can
be used to created suspended resist (free-standing bridge) which is used for the JJ fabrication in double angle
evaporation.

• Deposition of thin aluminum layer: As a result of the sapphire wafer we employ, we are required to
deposit a thin layer of aluminum for discharge; otherwise, there is a chance that the charge on the
sapphire would affect the electron beam during lithography. This thin aluminum layer is deposited
for evaporation. In our experiments we deposit 25 nm.

• Electron-beam lithography: we use a focused beam of electrons for patterning the polymers.

• Resist development and pre-cleaning: we develop the polymers. In particular we use AZ MIF 300
developer to remove the aluminum layer and than MIBK:IPA(1:3) to remove the exposed resists.

Figure 7: Before and after the development
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• Electron-beam evaporation: We use a double angle evaporation method to fabricate JJs as depicted
in figure 8 3. We use aluminum for the JJs because we know the growth of aluminum oxide.
First we deposit aluminum, than we wait for aluminum oxide growth (we create the insulator barrier)
the last passage is the second evaporation.

Figure 8: steps of double angle evaporation technique

• Lift-off: we use acetone to dissolve the resist which leaves behind the JJ on the substrate.

We now need to specify how the electrical contact between the Niobium pads and Josephson Junction could
be made. Up to now they have used ion milling to the Niobium pads on sapphire substrate to remove
Niobium oxides . But in order to increase the coherence time, we have used a method called "patching."
(Lithography masks are used to produce niobium pads.)

2.2 ELECTRIC CONTACT WITH ION MILLING

Before the deposition of the Josephson Junctions on Niobium pads we do ion milling to remove the oxides.
We do ion milling with three different angles using the same apparatus that we will use for ShET later. We
use this technique to hollow out the sapphire wafer as homogeneously as possible. We do this because
we are unable to do ion milling on niobium alone. So, this technique creates an irregular substrate for the
junction.

2.3 PATCHING

We place the JJ on the Niobium pads using this alternative method. We completed two alternative forms of
this deposition; the reason behind our decision is discussed in the section below. The JJs were placed on
the Niobium pads the first time, then to shield the junctions from any charge accumulation, JJs are placed
between the pads.
Unfortunately, in the first situation there is no electrical contact between JJs and pads due to the buildup of
oxides, and in the second scenario there is no electric contact due to the absence of a contact in addition to
the oxides. We employ a method called "patching" to make the electrical contact.
To create the electric contact we use, like for the junction, a stack of two resists and on the top a thin alu-
minum layer (for discharge) . In this instance, a tiny layer of aluminum is deposited for evaporation so that

3we use +22ř and °22ř as angles.
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no electrons are present to potentially harm the junction.
To print the bandages on the transmon, we are currently using electron beam lithography. After removing
the aluminum, we will develop the resists.
To get rid of the niobium and aluminum oxides, we now use ion milling. Finally, aluminum is deposited to
make the electrical connection between the pads and JJs. "Patching" is the name of this procedure. Also
when we deposit JJs between the pads we use the patching, the only difference is that the electric contact is
established between the parts only at the end.

3 RESISTANCE MEASUREMENTS

It is crucial to measure the resistance of junctions at room temperature since this resistance and the junc-
tion’s critical current are correlated, and by fixing the critical current we can fix the qubit frequency.

Ic =
º¢(0)
2eRn

(37)

With ¢(0) is the gap of superconductor at T = 0 K, for aluminum ¢(0) ª 170µeV , Rn is the normal resistance
of the junction at room temperature. So, for a certain qubit design, Ec is fixed and the qubit frequency is

!q =
q

8E j Ec °Ec (38)

where E j is the Josephson energy

E J =
fl
2e

Ic (39)

3.1 RESISTANCE MEASUREMENTS, JJS ON THE PAD

Figure 9: Optical microscope image of a Josephson junction. Case of overlay between JJ and pads
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Figure 10: Optical microscope image of Josephson junction with patching

We measured resistance once our JJ were ready. In our experiments, we constructed 100 Josephson junction
of various sizes. Particularly, only having resistances of around 10 K≠ are of interest to us.

RESISTANCE [K≠] JJs ON THE PADS
JJ [µm2]
0.014 600 600 600 600 600 600 600 600 600 600
0.018 600 600 600 600 600 600 600 600 600 600
0.023 600 600 600 600 600 600 600 600 600 600
0.030 600 600 10.4 600 600 600 600 600 600 600
0.039 9.35 600 600 600 600 600 600 600 600 600
0.050 600 8.34 7.64 600 8.43 600 8.41 8.51 600 600
0.061 6.50 600 600 7.20 7.35 6.14 7.17 600 600 600
0.072 5.85 6.16 5.89 600 6.03 5.97 600 7.43 6.27 600
0.090 600 4.79 4.92 4.85 600 4.76 5.08 4.81 5.08 5.01

Table 1: Resistance measurements of JJs on the pads

These measurements show that nearly all connections with minor dimensions are non-functional. At first,
we believed that the fallen bridge was to blame for the lack of current flow in the junction ( in fact 600 K≠ is
the resistance in parallel to the junction of our instrument).
But later, when we examined these junctions under an optical microscope, we discovered that there was
actually no current flow because the aluminum of the junction melted, creating an ESD damaged junction.
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Figure 11: Damaged junction possibly due to ESD event

The minuscule junctions may not have been adequately protected from outside charges by the thin alu-
minum layer intended for discharge, which is why a buildup of charge may have broken the junction. Be-
cause they are more robust, the larger junctions are still alive.
A fairly straightforward equipment is used to measure these resistances. We have two tips, and we set the
instrument’s resistance to 5 ≠ while applying the tips to the sample. Therefore, there is no current through
the junction if one tip is applied to the Noibium pads before the other. We change the instrument’s resis-
tance to 600 K ≠ after applying the tips. As a result, we measure the junction’s resistance. The instrument’s
extremely basic design is seen below.

Figure 12: Design of instruments. We can change this resistance between 5≠ and 600 k≠.

3.2 RESISTANCE MEASUREMENTS, JJS BETWEEN THE PAD

First of all, as depicted in the picture below, we can see the differences from the previous experiment. The
Josephson junction doesn’t touch the pads.
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Figure 13: No overlay

Figure 14: No overlay with patching, screenshot file gds.In order to simplify my interpretation of the image, I
have decided to delete the undercut.

To give greater protection from possible accumulations of charge at the junction, we decided in this second
experiment to deposit them between the two pads so as to have electrical contact only at the end with the
bandaids.
In fact, as we can see from the table below, with this technique many more junctions are functional, espe-
cially among those of small dimensions.
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RESISTANCE [K≠] JJs BETWEEN THE PADS
JJ [µm2]
0.014 39.7 20.2 20.3 300 19.1
0.018 600 16.3 150 400 17.7
0.023 220 600 0.12 47 16.0
0.030 22 13.1 11.8 1.4 13.1
0.039 600 40 10.9 70 0.170
0.050 9.3 600 0.126 11.0 10.0
0.061 8.9 8.8 0.160 9.3 9.4
0.072 7.70 8.0 7.2 500 7.40
0.090 500 13.5 600 6.78 6.26

Table 2: Resistance measurements of JJs between the pads

I used Python to perform a linear fit after these results to establish a direct correlation between normal
resistance and Josephson junction surface.
Once we have a fixed capacitor size, we can therefore use this plot to generate the transmon qubit at the
appropriate frequency.

Figure 15: Two linear fits of two different arrays of Josephson junction. One constructed using ion milling, the
other not.

3.3 MILLING TEST

The goal of this experiment is to find the shortest possible period that will allow the oxide on the Niobium
pads to be removed. As a result, we minimize sapphire etching.
Using the methods described above, we produced a specific sample. This sample’s surface was made of
three different materials: sapphire, aluminum, and niobium. At this point, we have used ion milling for
various lengths of time, and after that, we have examined how much the various materials have been etched.
We have done two experiments, one with 30 sec, for each angle, of ion milling and the other with 45 sec
always for each angle. After that, we used MikTek’s profilometer to measure the etching.
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4 QUBIT CHARACTERIZATION; [1]

We examine the cavity-qubit system within the refrigerator in this part. The minimum circuitry inside the
fridge is depicted in figure 16.

Figure 16: The minimum experimental setup for basic qubit characterization

The main qubit characterization includes five basic experiments:

• "punch out"

• Two-tone spectroscopy

• Rabi measurements

• T1 measurements

• Ramsey measurements

The first two experiments are in the frequency domain which means we only look at scattering parameters
of the system for characterization. However, the last three experiments are measured in the time domain
and involve preparation and readout of the qubit state. We examine only the first two.

4.1 "PUNCH OUT"

The qubit must first be determined to be "alive" or not. For so, we must determine whether the cavity
frequency changes in response to the qubit’s state. As we have seen at the theoretical level in 1.5.
Simply compare the cavity’s transmission (or reflection) at low power to high power to see whether the
cavity’s frequency varies. We can be fairly certain that a qubit is in its ground state when we use extremely
modest power to probe the cavity. Therefore we measure the resonance frequency of cavity when qubit is in
the ground state. Next, we turn up the power of the VNA to a very high power. In this case, we send a huge
amount of photons into the cavity which essentially overwhelms the qubit. Basically, the driving amplitude
is so high that the induced current exceeds the critical current of the junction. Practically, in such a high
power regime, we measure the bare cavity frequency. Now if there is a working qubit inside the cavity we
can see the cavity frequency shift and we say that the cavity “punched out”.
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Figure 17: The “punch-out” measurement

4.2 TWO-TONE SPECTROSCOPY

Knowing that the qubit is working, the next step is to find the qubit frequency. The idea is to continuously
send a weak microwave signal to the cavity at the low power cavity resonance (the cavity frequency when
the qubit is in the ground state) and probe the cavity transmission.
Therefore, we constantly receive a high transmission signal because we probe at the resonance of the cavity.
While this first tone is on, we start sending another microwave signal (labeled as BNC 4 ) into the cavity.
We sweep the frequency of the probe tone BNC and monitor the cavity transmission. During the sweep,
once the BNC frequency hits the qubit transition frequency (BNC= !q ), it excites the qubit therefore the
state of the qubit is no longer in the ground state (on average) and that causes a shift in the cavity frequency.
Now, because the VNA frequency (which is fixed) is no longer resonant with the cavity, the transmitted
power drops. If we increase the BNC signal amplitude (by ª 10 dBm), we can also see a second dip at a
slightly lower frequency. This dip corresponds to the process by which two photons excite the qubit from
the ground state to second excited state,

ØØg
Æ
°!

ØØ f
Æ

. The second dip gives a useful piece of information which
allows us to simply calculate the transmon anharmonicity.

4BNC is the name of generator
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Figure 18: Two-tone spectroscopy
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APPENDIX A CAVITY RESONATORS; [8]

We want to see the electric field between the plates of a circular capacitor at high frequency. If we apply a
constant pd (potential difference) across the capacitor then the field in the capacitor will be static.
The situation changes if we connect it to an alternating voltage generator. When the voltage reverses, the
positive charge of the top plate is taken away and is replaced by a negative charge; as this happens, the
electric field disappears and then reforms in the opposite direction. As the charge slowly swings back and
forth, the electric field follows.
Neglecting the effect at the edges we can write:

E = E0ei!t (40)

with E0 is a constant.
As the electric field changes inside the capacitor, the flux within the circuit changes ,thus generating a mag-
netic field

Figure 19: The electric and magnetic field between the plates of a capacitor

Let’s try to calculate this magnetic field with Maxwell’s equations:

c2
I

°

~B ·d~s = @

@t

Z

i nsi de °
~E ·~nd a (41)

so we obtain :

B = i!r
2c2 E0ei!t (42)

If the frequency increases the magnetic field increases accordingly. However, if we have a magnetic field
that varies, the electric field in the capacitor cannot absolutely be uniform by the law of Faraday.
So we can calculate the correction to the electric field found first with faraday’s law.

E = E1 +E2 (43)

E1 is the uniform field found earlier and E2is the correction.

I

°2

~E ·d~s =° @

@t

Z

i nsi de °2

~B ·~nd a (44)

E1 is zero in this integral only E2 contributes, and its integral is just °E2h, where h is the spacing between
the plates. While B changes only with r and not with h so :
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E2(r ) = @

@t

Z
B(r )dr

E2(r ) =°!
2r 2

4c2 E0ei!t
(45)

Similarly, we can continue to find fixes for fixes. Doing all the math we finally get the following series for the
electric field5:

E = E0ei!t [1° 1
(1!)2 (

!r
2c

)2 + 1
(2!)2 (

!r
2c

)4 ° 1
(3!)2 (

!r
2c

)6 + ...] (46)

if we define

J0(x) = 1° 1
(1!)2 (

x
2

)2 + 1
(2!)2 (

x
2

)4 ° 1
(3!)2 (

x
2

)6 + ... (47)

so we can write
E = E0ei!t J0(

!r
c

) (48)

B = i!r
2c2 E0ei!t J0(

!r
c

) (49)

Let’s see whether J0 does go trough zero and become negative. If we make the calculation more accurate we
find that it goes trough zero at x = 2.405. Below there is the graphic of the function

Figure 20: The Bessel function J0(x)

So we can see that for high frequency at the center of the cavity the field is opposite to the outermost one,
therefore this object is very complex to treat for high frequencies.
Now given our parallel flat plate capacitor of fixed radius r, we set the frequency such that the relation is
satisfied

!= 2.405c
r

(50)

So if we now close our capacitor with a very thin conductive foil, this since it is inserted where the fields are
zero does not involve any modification to the system.
And then given the initial impulse at the correct frequency, if we subsequently detach the wires from the
generator we have created a region of space in which the field is self-powered, a resonant cavity.
On parallel flat plates, however, due to the large divergence of the electric field there will be a strong accu-
mulation of charge. However, since the electric field is vertically oscillating this charge will have to reverse

5we set the field in the center of the capacitor equal to E = E0ei!t , so that in the center there are no corrections
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itself from one face to the other, creating surface currents that generate dissipation in our cavity.
If now we make two small side holes on the walls of the jar and insert two coils, one in which we circulate al-
ternating current to operate the fields and one attached to a current detector and we measured the intensity
of current as a function of the frequency of the generator we would see

Figure 21: A setup for observing the cavity resonance

Figure 22: The frequency response curve of a resonant cavity

Where Q is the quality factor of the cavity.
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