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Abstract

The report is a short review which focuses on the employment of a Superconducting Radio
Frequency (SRF) cavity for detection of Gravitational Waves (GWs). This first part is inspired
by the works of Berlin’s group. In the second part, we analyze also the idea to use a cavity-qubit
system for the GWs detection and the Dark Photons (DPs) detection. In this case, the starting point
is the work of Dixit’s group which will be extended for SQMS cavities.
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1 Introduction
Microwave or radio frequency (RF) cavities with superconducting walls are very important for
particle accelerators. Indeed, when they are excited at their resonant frequency, they build up large
amplitude electromagnetic (EM) field which dissipates very little heat. This makes it possible
to provide an extremely conversion of radio-frequency power into energy gain for the charged
particle beams that pass through them. Despite of that main application, the SRF cavities are high
quality EM resonators which can be employ as sensors for detection of new physics. In particular,
we are studying them as detectors of non-newtonian gravitational fields and also for Dark Matter
candidates like the dark photons.

• In 1971, Braginsky and Menskii [1] suggested using microwave cavities to detect high-
frequency gravitational wave (GW).

• In 1978, Pegoraro et al. [2] developed cavities able to operate at much lower (radio)
frequencies.

Both high- and low-frequency microwave cavity detectors operate in essentially the same way :
a gravitational wave incident on the cavity couples its EM modes and thereby induces transition
between modes. The coupling is due to the direct interaction between the EM field and the GW
and to the indirect interaction in which the GW interacts directly with the cavity walls, whose
resulting motion couples the EM modes. In 2005, Pegoraro et al. proposed an experiment, so
called MAGO [5] which goes this way, i.e. using empty cavity with a EM field inside to detect GW.
In this report we would analyze the possibility to develop an experiment which uses a cavity-qubit
system. So, the purpose of this report is to understand if there are some advantages using this
system for detecting new physics respect to MAGO or not. Moreover, we are reporting all ideas and
calculations about GW that we thought on the road in this 9 weeks of research. We also are gonna
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to talk preliminary about qubit-GW interaction. Finally we are seeing that the dark photon (DM
candidate) search will be easier compared with GW one. Moreover, we are revisiting the paper of
Dixit et al. [6] to extend the idea of dark photon search with cavity-qubit system to SQMS cavities
in different regime of dark photon’s mass. We will see that the proposal to use the system in a Fock
state with a such huge n (number of photons) is not advantageous respect to Dixit et al.’s protocol.

2 SRF cavity
The SRF cavities are extremely high quality electromagnetic resonators. For quantum computing,
quantum states can be stored and manipulated in EM resonators, and superconductors at T „

mK are able to sustain the coherence of the quantum states for long enough to perform complex
computations. For quantum sensing, SRF cavities can furnish a large volume where very weak
signals of radio-frequency photons can be collocated, with only a small fraction of photons being
lost to heat at the cavity walls. Basically, from a theoretical point of view, a Superconducting Radio
Frequency (SRF) cavity is an Harmonic Oscillator (HO). We can imagine the cavity like a box with
an electromagnetic field inside of that.

1 dimensional model So, let’s focus on the HO equation of motion in one dimension (x̂, for
example) in presence of a loss term :

:xptq ` ω2
0xptq “ A cospωdrvtq ´

ω0
Q

9xptq (1)

where ω0 is the characteristic angular frequency of the oscillator (here the cavity thought like the
detector), ωdrv is the frequency of the driving term such as the signal of GW. The last term in
equation (1) is the loss term that we can think like the dissipation of the signal because of the cavity.
For the SRF cavities we have :

• Q „ Op1010 ˜ 1012q for the superconducting proprieties of the cavities. (SRF)

• ω0 „ GHz (SRF).

Hence, the damping time is tdamp „ 1010˜12

GHz " sec and it is an advantage in the detection. For
instance, we report below some numerical simulation of the solution of Equation 1 made by
Mathematica. In the resonant case, ωdrv „ ω0, we have the following two results.

Figure 1: Solution xptq of equation 1 in absence of the loss term. The trend of the peaks grows linearly in time.
The initial conditions fixed are : xp0q “ 0, 9xp0q “ 0. Set parameters : ω0 “ ωdrv “ 0.5, A “ 1.
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(a) In presence of losses. The initial conditions:
xp0q “ 0, 9xp0q “ 0. Set parameters : ω0 “ ωdrv “

0.5, A “ 1, Q “ 103.

(b) In presence of losses and resonance. The initial
conditions: xp0q “ 0, 9xp0q “ 0. Set parameters :
ω0 “ 0.5, ωdrv “ 0.501, A “ 1, Q “ 103.

Figure 2: Solution xptq of equation 1. In fig.(a) it is in presence of the loss term. The trend of the peaks grows
linearly in time until the damping time „ few ˆ103

0.5 . After this value, the solution saturates around
x „ 4Q. In fig.(b) it is in presence of the loss term for non-resonance.

In the non-resonant case, ω0 ‰ ωdrv, we can see that changing the frequency of the source for
a part over Q, the plot of the solution is completely stoned. We can find the analytic solution of
equation (1) in the Fourier space. We find that x̃pωdrvq is a Lorenzian distribution centred in the
characteristic frequency of the cavity ω0, i.e.

x̃pωdrvq9
1

pω ´ ωq2 ` pω0{Qq2 (2)

where the FWHM is ω0{Q and the half maximum is Q which is huge in SRF cavities. So the price
to pay is that the Lorenzian is strongly ω0-centered and narrow. Hence the frequencies of the GW
that can be detected are GHzp1 ˘ 1{Qq. Basically, for the order of Q, x̃pωq „ δpω´ω0q. However,
there is a technique called scanning which allows the distribution to move with translations in ω.
When there is match between ωGW and ω0 within a part over Q, then we have detection !
The implementation of scanning for cavity detectors corresponds to press and insert physical
objects inside the cavity in order to change the frequency ω0. In fact ω0 „

Op1q

length 1, so deforming
the length of cavity or its geometry, the characteristic frequency changes.

The Quality Factor is a fundamental characteristic for the cavities. Indeed, it describes decay rate
of excited mode m in cavity,

dPm

dt
“ ´

ωm

Qm
Pm . (3)

1There is another (stronger) interaction to consider, i.e. the indirect interaction of GW with boundary of the cavity.

4



Moreover, the typical parameters for Niobium cavity are : Tc “ 9.2 K, Bc “ 0.2 T, so that
Q „ Op1010q. We can optimistically assume Q „ Op1012q.

Figure 3: Diagram from W. Buckel, R. Kleiner, Superconductivity, John Wiley & Sons, Inc. (2004).

Until now, we imagined to approximate the SRF cavities like a HO with some losses. Of
course, in the reality, the physics is more complicated. For instance we are not considering the
nonlinearities of the cavity system. Recently nonlinear effect have been studied and shown to
depend on both the disorder parameter and the temperature of the superconductor.

3 Gravitational Waves
The first direct observation of GW in 2016 by the ground-based interferometers LIGO and Virgo
represented the irrefutable proof of Einstein’s theory of General Relativity. These interferometers
are able to detect GW in the Hz-kHz frequency range. The Universe is expected to be populated
by GW over many decades in frequency, analogous to EM radiation, carrying information that
may revolutionize our understanding of Nature. This fact has spurred the development of a large
array of observational efforts with the aim of detecting much lower frequency signals compared to
current interferometers. For this reason the detection with SRF cavities gives us the opportunity to
explore another region of the spectrum of GW, i.e the GHz regime.

3.1 Expansion around flat space
In this subsection we derive the GW like a linear perturbation of a flat space. Indeed, the General
Relativity, in this expansion and breaking the local invariance, can be thought like a Classical Field
Theory in a flat space ηµν “ diagp´1, 1, 1, 1q with a spin-2 field hµν . The gravitational action is
S “ SHE ` SM , where

SHE “
c3

16πG

ż

d4x
?

´gR (4)

is the Hilbert-Einstein action and SM is the action of the matter. With the action principle, making
a variation of the curved metric, according to

δSM “
1
2c

ż

d4x
?

´gTµνδgµν ,

we find the Einstein equations,

Rµν ´
1
2gµνR “

8πG
c4 Tµν . (5)
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In General Relativity (GR) the gauge symmetry corresponds to the invariance under an arbitrary
diffeomorphism : xµ Ñ x1µ. As a first step, we wish to study the expansion of the Einstein
equations around the flat-space metric. We write

gµν “ ηµν ` hµν , |hµν | ! 1 (6)

and we expand the equations of motion to linear order in h. The resulting theory is called linearized
theory. The symmetry of this theory is described by the transformation xµ Ñ x1µ “ xµ ` ξµ

where the derivatives |Bµξν | are at most of the same order of smallness as |hµν |. If we transform
the metric under diffeomorphism :

gµνpxq Ñ g1
µνpx1q “

Bxρ

Bx1µ

Bxσ

Bx1ν
gρσpxq

we find that the transformation of hµν , to lowest order, is

hµνpxq Ñ h1
µνpx1q “ hµνpxq ´ pBµξν ` Bνξµq . (7)

If |Bµξν | are at most of the same order of smallness as |hµν |, the condition |hµν | ! 1 is preserved.
The extension of Lorentz transformation is trivial : h1

µνpx1q “ Λ ρ
µ Λ σ

ν hρσ, it shows that hµν is a
tensor in the flat space. The rotations never spoil the condition |hµν | ! 1 while for the boosts we
must limit ourselves to those that do not spoil the condition. Also under constant traslations the
hµν is invariant. So, we can say that the linearized theory is invariant under Poincaré group. In
contrast, the full General Relativity does not have Poincaré symmetry.

The Riemann tensor after this expansion, becomes

Rµνρσ “
1
2pBνBρhµσ ` BµBσhνρ ´ BµBρhνσ ´ BνBσhµρq (8)

and we can see that it is invariant under transformation (7). Defining h̄µν “ hµν ´ 1{2ηµνh where
h is the determinant and h̄ “ ´h, we can find the linearized Einstein equations :

˝h̄µν “ ´
16πG
c4 Tµν (9)

where we used the gauge freedom to chose the Lorentz gauge,

Bν h̄µν “ 0 . (10)

It is interesting to note from (9) that, outside the source (Tµν “ 0), the GW travels at the speed of
light. Indeed, equation (9) is a D’Alembert wave equation in presence of a source. As we can see
from equation (8), hµν has Riemann tensor not null. It means that the GWs are waves of curvature
of space-time. In Appendix A we reported a deeper analysis of the two possible frames we can
choose for GWs : TT frame and proper detector frame. We will work in the second one which
is physically the frame of Lab and which generalizes the notion of an inertial observer to curved
space-time and reduces to the flat space-time metric in the ωg Ñ 0 limit. We can do that if the
condition λg " Ldet, where λg is the wavelength and Ldet the characteristic length of the detector,
is preserved.

3.2 Graviton-photon interaction
In this subsection we want to translate the graviton - photon interaction in the language of classical
fields. The GR-EM coupling is encapsulated in the Einstein-Maxwell action

S “ ´
1
4

ż

d4x
?

´ggµαgνβFµνFαβ (11)
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where Fµν is the EM field strength. We linearize the theory for isolating the effect of GW, i.e.
gµν “ ηµν ` hµν ` Oph2q, and we keep only the Ophq terms. We find S9

ş

hF 2. Therefore the
Feynmann diagram associated is a vertex with two photons and the graviton. Schematically the
form of interaction scales like „ hB ¨ B0, where B0 is the static B-field controlled in the Lab by
us and B the B-field to read out. This implies that a GW of frequency ωg can generate an EM
field of typical magnitude hB0 at the same frequency. Inside an EM cavity, this signal will ring
up coherently if ωg matches the cavity’s resonant frequency. At the level of single quanta, this
effect can be interpreted as graviton-photon mixing in a background magnetic field, known as the
inverse-Gertsenshtein effect. The original Gertsenshtein effect, discovered in 1962, comes from
˝ht`,ˆu “ 16πGB0BiAt`,ˆu.

Figure 4: Diagram of inverse-Gertsenshtein effect.

This kind of effect can be described also at a classical level, using the formalism of effective
current. When the cavity size is of order Ldet „ 1{ωg, the effect of interaction produces a
jeff „ ωghB0 „ Ophq. The direction of this current is not determined by the polarization of the
GW, being the graviton a spin-2 tensor field with a gauge freedom. We report below a figure which
illustrates the effective conversion of a GW into and classical current (from the Berlin et al.’s paper
[4]).

Figure 5: Figurative representation of GW - jeff conversion.

This is a good method to detect GWs. We note that it is already well established in axion
experiments (e.g. ADMX). The equation of motion can be derived directly from the action (11).
Linearizing the theory and integrating by parts we find the following Ophq term in the action

SrOphqs “ ´
1
2

ż

d4xjµ
effAµ (12)

where the effective 4-current is

jµ
eff ” Bν

´1
2hF

µν ` hν
αF

αµ ´ hµ
αF

αν
¯

(13)

which is not a true 4-current. Indeed, it is not invariant under transformations between frames. By
the way, let’s analyze the electromagnetism in presence of the linearized gravity. We have just
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to substitute the derivative with the covariant derivative ∇µ in order to find the GW-Maxwell’s
equations.

∇µF
µν “ ´

4π
c
Jν , ∇rµFνρs “ 0 . (14)

Now, expanding the covariant derivative and the metric around the space, we find

BµF
µν » Jν

´

1 `
h α

α

2

¯

´ hναJα `
Bµ

´

h α
α F

µν
¯

2 ` BµphµαF ν
α ` hναF µ

α q . (15)

So, we see that a variations of metric (GWs) acts as EM source terms.

A GW can be most easily described in the TT-gauge

Bµh
µν “ 0, h µ

µ “ 0, h00 “ h0i “ 0 . (16)

The Riemann tensor is gauge invariant and it can be computed in the TT-guage, i.e.

R0i0j “ ´
1
2

:hT T
ij . (17)

For instance, a monochromatic GW in the z-direction can take the simple form

hT T
µν “ Hµνe

iωpt´zq, Hµν “

¨

˚

˚

˝

0 0 0 0
0 h` hˆ 0
0 hˆ h` 0
0 0 0 0

˛

‹

‹

‚

. (18)

However, the TT-frame is not physical! It does not describe a Gravitational Wave as seen by a local
observer. Therefore, we should make another gauge choice. A better choice is the Fermi Normal
Coordinates.

Fermi Normal Coordinates (FNC) are defined in the vicinity of a time-like geodesic G in
a curved manifold M. The coordinate system pt, xiq is constructed so that geodesic is at zero
spatial coordinates xi|G “ 0. The metric is Minkowski along the geodesic, gµν |G “ ηµν , i.e. the
spacetime is flat and the Riemann tensor is locally zero along the geodesic. Moreover the first
derivatives vanish along the geodesic, i.e. Bλgµν |G “ 0. In summary, the FNC are the inertial
coordinates that a free-falling observer would set in a neighborhood around them, not just at one
instant in time but all along their world-line.

The general form of metric in the FNC is still complicated even if we consider the follow-
ing simplification : a “ 0 and ω “ 0. It is justified by the fact that the Gravitational field of the
Earth is almost static and varies on typical frequencies À 0.1 Hz. So, for convenience, we can thus
choose to evaluate the Riemann tensor in TT frame. In this case we find

h00 “ ´ω2
hh

T T
ab x

axb
”

´
i

ωgz
`

1 ´ e´iωgz

pωgzq2

ı

hij “ ω2
g

”

pδijh
T T
ja ` δjzh

T T
ia qzxa ´ hT T

ij z2 ´ δizδjzh
T T
ab x

axb
ı”

´
1 ` e´iωgz

pωgzq2 ´ 2i1 ´ e´iωgz

pωgzq3

ı

h0i “ ´ω2
gphT T

ia zxa ´ δizh
T T
ab x

axbq

”

´
i

2ωgz
´
e´iωgz

pωgzq2 ´ i
1 ´ e´iωgz

pωgzq3

ı

,

(19)
where the GW is evaluated in the spatial origin, the indices a, b “ x, y run over the perpendicular
components to the GW’s direction of propagation. Substituting the expression above into (13) we
find the effective current inducted by the GW in the cavity in presence of a static B-field, in terms
of the TT polarizations (`,ˆ).
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3.3 SRF cavities for GW detection
For this report we consider cylindrical cavities that admits analytic expressions for the cavity modes.
Moreover if B0 is aligned along the symmetry axis of the cavity, hence the considerations of EM
signal become easier. The general idea to detect GWs with cavities comes from two possible
interactions : the direct interaction of the GW with the EM field inside the cavity and the indirect
or mechanical interaction of the GW with the boundaries of the cavity. First of all, let’s focus on the
first of these. In the so called Heterodyne Experiments, the GW is on-resonant with the frequency
difference of two cavity modes and couples to both E- and B-field. Because of Lcav „ 1{ω0, it
is difficult to build a cavity as a detector in low frequencies regime. Therefore, the Heterodyne
protocol is a good technique to overcome this problem.

(a) The inverse-Gertsenshtein inter-
action

(b) Schematic example HD experiment.

We can use an external oscillator in the pump mode of frequency ω0 and let’s call ω1 the
frequency of the read-out mode. The GW is going to be on-resonant with ∆ω “ |ω1 ˘ ω0|. For
SRF cavity (ω „ GHz) with Qint „ 109 ˜ 1013, the tunability is δω „ MHz.

The other interaction comes from the deformation of the cavity and hence the resonant fre-
quency of that. In this case, the GW is source of an additional vibrational signal. Indeed the GW
perturbs the cavity wall ∆x and since the cavity modes depend on the geometry, the frequency
will change like ω0 Ñ ω0p1 ` fp∆xqq. In the proper detector frame, the effect of GW is that of
Newtonian force on the test mass, Fi »

m

2
:hT T

ij xj . In few words, the passing gravitational wave
will move walls, spreading power in frequency space.

Figure 6: Deformation of the cavity by the passage of a GW.
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As we saw above, we need to calculate the electromagnetic signal that arises in the resonant
cavity immersed in the static B-field B0 which is also spatially uniform in proper detector frame.
Let’s have a general discussion on the structure of the read-out EM signal for any SRF cavity.
Assume for a moment that this cavity permits a decomposition of the electromagnetic field into
their resonant modes. For the general formalism, we follow the Ref. [4] which is an extension of
Axion with SRF cavities (Ref. [10]) to GW detection.

The components of the effective current jµ
eff “ pρeff , jeffq have to be added to the inhomoge-

neous Maxwell’s equations,
∇ ¨ E “ ρeff ` ρ

∇ ˆ B ´ BtE “ jeff ` j
(20)

where ρ and j are the physical charge and current. We identify B0 (the static external B-field) like
that piece of j which doesn’t depend on hµν , so that ∇ ˆ B0 “ j0. We are interested to the terms
of order Ophq. The reader can see the Ref. [4] for the proof that the homogeneous Maxwell’s
equations (∇ ¨ B “ 0,∇ ˆ E ` BtB “ 0) are not affected by the GW. The deep reason is that these
Maxwell’s equations come from a topological metric independent equation of motion, dF “ 0,
where d is the exterior derivative and F a two (differential) form. It is important to note that the
homogeneous equations determine the resonant cavity modes. Combining the second equation of
(20) and the Faraday’s law, we find

∇ ˆ ∇ ˆ E ` B2
t “ ´Btjeff ´ Btj . (21)

The electric field inside the cavity can be expanded in terms of the resonant modes En :

Epx, tq “
ÿ

n

enptqEnpxq (22)

where en is a dimensionless time-dependent coefficient. We assume to consider only solenoidal and
non-solenoidal (not considering the irrotational modes) contributions. The spatial En functions
satisfy the relations:

∇2Enpxq “ ´ω2
nEnpxq

ż

V
d3xEnpxq ¨ Empxq˚ “ δnm

ż

V
d3x|Enpxq|2

(23)

where ωn is the resonant frequency of the n-mode of the cavity and V is the cavity’s volume.
Another constrain that the modes satisfy is n̂ ˆ Enpxq “ 0. The boundary of the cavity can
oscillate in the presence of the GW which induce the tidal force that will affect our signal at Oph2q.
Combining the equations (22)-(23), we can write the wave equation in terms of the coefficients en,
i.e.

ˆ

B2
t `

ωn

Qn
Bt ` ω2

n

˙

“ ´

ş

V d
3xE˚

n ¨ Btjeff
ş

V d
3x|En|2

(24)

where the quality factorQn appears from the losses of the cavity. The parameters which are affected
by the interaction between the GW and the cavity walls are ωn and V , i.e. OpV, ωnq „ Ophq

.Therefore, from (24) we see that the effect of GW is Ophenq and Ophjeffq, hence both of order Oph2q.
For a monochromatic GW on resonance with the cavity mode (ωg » ωn), jeffpx, tq “ eiωgtjeffpxq,
the solution of (24) is simplified by the large quality factor. Therefore, taking the stationary solution
of that equation, we find analytically :

Esigpx, tq “ enEn “ ´

ş

V d
3x1E˚

n ¨ jeff
ş

V d
3x1|En|2

Qn

ωg
Enpxqeiωgt . (25)
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For more details the reader can see Ref. [4]. Here it’s sufficient to show that electric field to
read-out is proportional to Qn which is huge for SRF cavities. Some results and formulas will be
presented below when necessary.

As we said above, the effective current sources a small signal field Bsig „ hB0. Typically,
the signals are classified into two different categories : stochastic GW backgrounds and GWs with
a preferred direction of propagation and well defined frequency. We concentrate on the latter case.
The setup we imagine is reported in Figure 7 where a GW can interact with the static B-field of the
cavity and excite a specific cavity mode (ωsig » ωg „ GHz)2.

Figure 7: Interacting GW (red) with the static B-field (blue) resonantly exciting a cavity mode (green).

Still following the Ref. [4], the sensitivity of the above setup to the GW strain h is

h Á 2 ˆ 10´22 ˆ

˜

1 GHz
ωg{2π

¸3{2˜

0.1
ηn

¸˜

8 T
B0

¸˜

0.1 m3

V

¸5{6˜

105

Q

¸1{2

ˆ

˜

Tsys
1 K

¸1{2˜

∆ν
10 kHz

¸1{4˜

1 min
tint

¸1{4
(26)

where ηn is the coupling coefficient3 of the cavity, Tsym the system temperature, ∆ν the signal
bandwidth and tint the integration time. In Figure 8 it is shown the sensitivity of the cavity
experiment, originally thought to detect Axion DM.

2In Appendix B the reader can find a summary of the sources of GW in the spectrum regime kHz - GHz.
3In the sensitivity estimate it is defined as

ηn ”

ˇ

ˇ

ˇ

ş

V
d3xE˚

n ¨ ĵ`,ˆ

ˇ

ˇ

ˇ

V 1{2p
ş

V
d3x|En|2q1{2

where ĵ`,ˆ is the effective current inducted by GW depending on the polarization.
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Figure 8: The projected sensitivity of axion cavity haloscope experiments to high-frequency coherent gravita-
tional waves. From [4].

The resonant cavities operate in regime where the GW frequency is comparable to the inverse
geometric size of the cavity, ωgL „ 1.

From Figure 4 which describes the electromagnetic interaction of the GW, we see that the
B0 field can be static or oscillating. The effects to the Bsig are different in these two cases.

• ∆Bsig „ hB0
?
Qmin

”ω2
g

ω2
0
, 1

ı

for the oscillating case.

• ∆Bsig „ hB0
?
Qmin

”ω2
g

ω2
0

ωg

ω0
, 1

ı

for the static case.

The suppressive terms „
ω2

g

ω2
0

come form the Riemann tensor which contains the second derivatives

of the GW. For the static case also the time derivative of the current contributes. From this
parametric argument it is not obvious which of these effects has a best sensitivity. We could prove
that the oscillating case “wins”. While, the mechanical interaction has not a suppressive factor
because the resonant frequency can be lower than the GW frequency. At the level of single quanta,
the interaction is a vertex with a phonon-GW-photon. The variation of the B-field (photon in the
vertex) is

• ∆Bsig „ hB0
?
Q .

3.4 Noise and Sensitivity
In this subsection, we want briefly to describe the expected dominant noise sources for the setup,
schematically shown in Figure 9.
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Figure 9: A diagram of the all sources of noise for the electromagnetic signal to readout in presence of static
B-field.

The two main sources of noise are: the oscillator phase noise and the mechanical noise.
Increasing the quality factor, other than increasing the signal power, decreases these two sources of
noise. Following Ref. [10], we can find that the power spectral density for the oscillator phase
noise is

Sphasepωq »
1
2ϵ

2
1d Sϕpω ´ ω0q

looooomooooon

Input Oscillator

pωω1{Q1q2

pω2 ´ ω2
1q2 ` pωω1{Q1q2

looooooooooooooomooooooooooooooon

Cavity response pB´Wq

ω0Q1
ω0Q0

Pin
looomooon

Overall Normalization

(27)

where ϵ1d is the small coupling of the oscillator to the signal mode. From the MAGO’s setup of ’05
ϵ » 10´7. The other important source of noise is the vibrations. So the mechanical power spectral
density in this case can be written like

Smechpωq “
ÿ

n“0,1
S

pnq

mechpωq »
ϵ21d
4
ω0
Q0

Pin

ÿ

n“0,1

Wall Displacement
hkkkkkkkikkkkkkkj

pSqmpω ´ ω0q {V 2{3qpωn{Qnqω4
nω

2
”

pω2 ´ ω2
nq2 ` pωωn{Qnq2

ı”

pω2
0 ´ ω2

nq2 ` pω0ωn{Qnq2
ı

looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Cavity Response

(28)

where the sum is over the pump (n “ 0) and signal (n “ 1) modes. Sqmpω ´ ω0q is the spectrum
of vibrations which can be measured by MAGO and DarkSRF in the spectrum we care about. The
other sources of noises described by PDSs are

• Thermal Noise (cavity walls)

Sthpωq “
Q1
Qint

4πTkBpωω1{Q1q2

pω2 ´ ω2
1q2 ` pωω1{Q1q2

• Amplifier Noise
Sqlpωq “ 4πℏω1
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All PSDs can be summed up and we find

Snoisepωq “ Sqlpωq `
Q1
Qcpl

´

Sthpωq ` Sphasepωq ` S
p1q

mechpωq

¯

`
Q0
Qcpl

S
p0q

mechpωq (29)

which describes the total source of noise for the read-out signal. For more details about the
other sources of noise, the reader can see Ref. [10]. Only for completeness we report below the
comparison of different noise powers.

Figure 10: Comparison of the total power in thermal (yellow), amplifier (cyan), oscillator phase (red), and
mechanical vibration (blue) noise, shown as a function of the axion mass ma. Here the frequency
“ ma{2π. It is just a parameterization in frequency.

The two plots are linked to the values of parameters ϵ and Q used recently in different
experiments. We can note that in the regime of MHz the Pph decreases and the thermal source is
the dominant one (see figure (a)). This the reason why in the computation of the signal-to-noise
ratio (SNR4) we can consider like δPnoise the thermal power Pth. From the Dicke Radiometer
equation it is known that

SNR „
Psig

T

c

tint
∆ω (30)

where ∆ω “ ω0{Q.

3.5 Cavity - qubit system for GW detection
The first natural question we should ask ourselves is if the sensitivity of GW measurements increases
adding a qubit inside the cavity. Moreover, to understand that, it is also necessary to think about the
direct interaction between the GW and the qubit itself (see subsection 3.6 below). The conjecture is
that the presence of the qubit changes the SNR of a factor larger than one,

SNR Ñ SNR ˆ

c

Tcav
TR

(31)

where TR is the temperature of the readout mode. The qubit seems to reduce the read-out noise.

Before to explain what we understood or didn’t about the direct interaction GW-qubit yet, it
is important to say how nowadays the qubits are used for detection of new particles. The integration
of a qubit into an ultra high cavity may allow for employing a photon counting non-demolition
measurement for DM searches. The qubit has just the role of instrument for parity measurement in
the number of resonant photons in the cavity.

4SNR „
Psig

δPnoise
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3.6 GW - qubit direct interaction
It is hard to find a way to match the linearized theory of General Relativity, i.e. the GWs, with the
quantum theory of qubit states. The personal idea of the author of this report is to find a mapping
between the spinor field of the QED for a fermion spin-1/2 in the chiral representation and the two
level states of the qubit. The mathematical work consists of finding this formal mapping between
these two worlds. The symmetries of QFT should be mapped to some operators in the Hilbert
space of the qubit. For instance, the Charge Conjunction is mapped into the Pauli matrix σy while
the Parity transformation is mapped into the Pauli matrix σx.

The spinor field ψα, where α “ 1, . . . , 4 is the spinorial index, can be written in the chiral
representation,

ψ “

ˆ

ψR

ψL

˙

, γ0 “

ˆ

0 1
1 0

˙

, γi “

ˆ

0 ´σi

σi 0

˙

, γ5 “

ˆ

1 0
0 ´1

˙

(32)

and the mapping consists of ψR ÞÑ |0y, ψL ÞÑ |1y. The full density Lagrangian of QED in presence
of dipole interaction is

L “ ´
1
4FµνF

µν ` ψ̄piC ´mqψ´eψ̄γµAµψ
looooomooooon

(a)

` Λψ̄σµνγ5ψFµν
looooooomooooooon

(b)

, (33)

where σµν “
i

2pσ̄µσν ´ σ̄νσµq. We can show that the only term which couples the left with the
right handed part is the the interaction term (b). Indeed, expanding the calculation in the chiral
representation, we find

Λψ̄σµνγ5ψFµν “ Λpψ:

R, ψ
:

Lq

ˆ

0 1
1 0

˙

σµν

ˆ

1 0
0 ´1

˙ ˆ

ψR

ψL

˙

Fµν

“ Λpψ:

L, ψ
:

Rqσµν

ˆ

ψR

´ψL

˙

ηµαhνβF
αβ ` . . .

9 Λpψ:

LψR ´ ψ:

RψLqηµαhνβF
αβ ` . . .

(34)

So, the interaction term produces a vertex with a GW, a photon (the signal reproducible in the Lab)
and the mapped qubit. Therefore, we can see that the interaction with the qubit is allowed only in
presence of a EM field in the background. In Figure 11 it is illustrated the vertex of interaction.

Figure 11: Interaction GW - qubit - photon
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Ideally, if we fix the EM field in the Lab and the qubit initialized in the |0y state, if the GW
couples, hence the qubit could flip into the excited state. This picture is obviously naive but it gives
the physical idea of this interaction mapping.

3.7 Electron dipole interaction with gravity
Let’s consider the spinor QED densitu Lagrangian for an electron which includes the kinetic term,
the normal photon interaction term and the dipole magnetic term.

L “ ψ̄piC ´mqψ ´ eψ̄γµAµψ ` gψ̄σµνψFµν (35)

If we calculate the equation of motion for the electron and we do the non-relativistic limit considering
the external potential so much smaller than the electron mass, then we find the a Schrödinger
equation with the Pauli Hamiltonian plus a dipole contribution,

H “
1

2mpp ´ eAq2 `
e

2mσ ¨ B ´ 2gpiE ` Bq ¨ σ . (36)

What happens if we consider the expanded metric too?

ψ̄σµνgµαgνβF
αβψ « gψ̄σµνhµαηνβF

αβ

« gψ̄
”

´ 2pEi `Biqhijσ
j ` pBk ` Ekqϵkijh0iσj`

` iσjh00Ej ´ σkhj
jBk

ı

ψ

(37)

Therefore, the magnetic dipole correction due to gravity coupling is

B ¨ σ Ñ Bihijσ
j `Bkϵ

kijh0iσj ´ σkhj
jBk . (38)

This effect is so small to be observed with the current detectors. From equation 1.87 of Ref. [7]
we can see that the metric in the laboratory frame is parametrically h „ x2R, where x is the size
of your detector and the Riemann tensor is related to the metric in the TT frame by R „ ω2hT T ,
which gives h „ pxωq2hT T .

4 Dark Photon
It has been hypothesized that the dark photon exists as a new gauge boson It is dark because it
results from a symmetry of a fictitious dark sector made up of particles that are fully neutral with
respect to interactions in the Standard Model. Despite being dark, this new gauge boson can be
found thanks to kinetic mixing with a regular, visible photon. In this section we describe briefly the
theory of the dark photon and the Dixit’s experiment Ref. [6] extended to the SQMS cavities. We
also are going to show why there is not advantage to use Fock states of multi-photons for detection
of dark photons.
In the last few years it is growing the hope of dark sectors in the Standard Model & and Beyond
theory of particles. These sectors are called dark because the belonging particles are not charged
under the Standard Model gauge groups. The dark sector is assumed to exist as a world parallel to
our own.
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4.1 Theory
The visible photon is assumed to be a gauge boson of the Up1q gauge group of electromagnetism,
i.e.the QED, while the dark photon comes to be identified as the boson of an extra Up1q1 symmetry5.
The extended Standard Model gauge group is SUp3q ˆ Sp2q ˆ Up1q ˆ Up1q1. Unlike the its
SM counterpart, the dark photon is massive and this breaks the Up1q1 symmetry. The only
renormalizable interaction one can write involving the dark photon field is a kinetic mixing with
the SM photon. Therefore, the Lagrangian is

L “ LSM ´
1
4F

1
µνF

1µν `
1
2m

2
A1A1

µA
1µ ` ϵFµνF 1

µν (39)

where ϵ is the kinetic coupling. The ordinary photon couples only to ordinary matter and the
massive dark photon is characterized by a direct coupling to the electromagnetic current of the the
SM particles (in addition to that to dark-sector matter) and described by the Lagrangian,

L Ą ´
eϵ

?
1 ´ ϵ2

JµA
1µ » ´eϵJµA

1µ . (40)

This is the choice defining the massive dark photon. The interaction between the dark photon
and the visible photon is linear, Lint9 ´ eϵJEM

µ A1µ. Therefore the diagram of interaction is that
reported in Figure 12.

Figure 12: Interaction dark photon - visible photon.

The effect of a dark photon incoming to a cavity is independent from the electromagnetic field
inside the cavity. We can parametrize this effect with an effective current as we did above for GWs.
In particular, the effective current is

jeff „ ϵmA1A „ ϵmA1

?
ρDM n̂A1 (41)

where in the last step we use m2
A1A12 „ ρDM in the non-relativistic limit. The density of DM in

the universe is ρDM » 0.4 GeV{cm3.

In the following figure we report the projected sensitivity of the proposed search for dark photon
dark matter with SQMS system assuming a fixed scan rate.

5We use the prime as sign to indicate the gauge group for the dark photon.

17



Figure 13: Projected sensitivity for dark photon searches.

4.2 Dixit et al.’s experiment with SQMS cavity
Dark though it is, the dark photon can be detected because of its kinetic mixing with the ordinary,
visible photon. Because a dimension four operator may be created by multiplying the field strengths
of two Abelian gauge fields, this kinetic mixing is always conceivable. The two gauge bosons can
interact with one other as they propagate since such an operator exists. The portal connecting the
visible and invisible worlds is created by this dynamic mixing. This portal is what enables the
experiments to find the dark photon.

Now, let’s describe briefly the protocol of Dixit’s experiment. The setup is a cavity-qubit
system for the parity measurement of photons in a Fock state of the resonator. The idea is to
prepare the cavity empty and make a number of measurement by the T coh

1 . If the qubit-based
photon counter which is based on Quantum non-Demolition (QND) techniques, observe a photon
(a change of parity), hence that photon could come from a dark portal. Of course, the analysis of
possible sources of photon coming from external noise, is really relevant here. In order to realize a
single photon counter, we need to utilize the interaction between a superconducting transmon qubit
and the field in a cavity, as described by the Jaynes-Cummings Hamiltonian in the dispersive limit
(g ! ∆ ” |ωc ´ ωq|). The Hamiltonian can be recast to elucidate a key feature: a photon number
dependent frequency shift (2χ) of the qubit transition,

H{ℏ » ωca
:a`

1
2pωq ` 2χa:aqσz . (42)

They used an interferometric Ramsey measurement of the qubit frequency to infer the cavity state.
Errors in the measurement occur due to qubit decay, dephasing, heating, cavity decay, and readout
infidelity, introducing inefficiencies or worse, false positive detections. a:a is the number of
photons operator. Therefore, if one photon in the cavity occurs, hence there is a frequency shift
of 2χ for the qubit. We are working in the limit of n̄ ! 1 so that n equals only to 0 or 1. Let’s
consider to go to the ωq-rotating frame. Now, we prepare through a π{2-pulse the state of the qubit
in the balanced superposition p|gy ` |eyq{

?
2. The state is stationary in this frame. If a photon

appears in the cavity, i.e. n “ 1, hence the qubit state starts to precede with the 2χ frequency6.
After an amount of time like t “ π{2χ, we apply a ´π{2-pulse and if a photon appeared hence
the qubit will be in the |gy, otherwise in the |ey state. In this work, they used a device composed
of a high quality factor (Qs “ 2.06 ˆ 107) 3D cavity used to accumulate and store the signal

6Here |2χ| “ 2π ˆ 1.13 MHz.
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induced by the dark matter (storage, ωs “ 2π ˆ 6.011 GHz), a superconducting transmon qubit
(ωq “ 2πˆ 4.749 GHz), and a 3D cavity strongly coupled to a transmission line (Qr “ 1.5 ˆ 104)
used to quickly read out the state of qubit (readout, ωr “ 2π ˆ 8.052 GHz). See Figure 14.

Figure 14: Setup Dixit’s experiment.

In order to account for all possible error mechanisms during the measurement protocol, they
modeled the evolution of the cavity, qubit, and readout as a hidden Markov process where the
cavity and qubit states are hidden variables that emit as a readout signal. By counting photons with
repeated parity measurements and applying a Markov model based analysis, they demonstrate single
photon detection with background shot noise reduced to ´10 log1 0

?
n̄c “ 15.7 ˘ 0.9 dB below

the quantum limit. They carried out a focused hidden photon search using this detection method.
The injected n̄ is far below the background population n̄c, and they collected 15, 141 separate
observations where the interval between measurements is significantly greater than either the cavity
or qubit timeframe. Dixit’s group counted 9 photons in 15, 141 measurements. According for the
systematic uncertainties of the experiment, a hidden dark photon candidate on resonance with
the storage cavity (mA1c2 “ ℏωs), with mixing angle ϵ ą 1.68 ˆ 10´15 i sexcluded at the 90%
confidence level. If we assume that ρDM » 0.4 GeV{cm3, hence Figure 15 shows the regions of
hidden photon parameter space are excluded by the qubit based search.

Figure 15: Hidden photon dark matter parameter space.

In the Ref. [6], the reader can find the set of parameters of the cavity-qubit system. We note
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that the cavity’s volume is V “ 11.3 cm3 and so

ndf » ρDM {mdf ñ Ndf » ndf ¨ V »

´0.4 GeV
cm3

¯

ˆ

´ 1
µeV

¯

ˆ 11.8 cm3 » 1015 . (43)

Extension to multiphoton Fock state? The real question is: Can is there an advantage using
a Fock state of the cavity with a huge number of photons? The idea is to prepare the cavity in such
state and waiting an amount of time as the coherence time T coh

1 . We expect that population of
photons contained in the Fock state, will decrease exponentially. If we observe some peaks hence
they could be photons coming from dark photons in the cavity there are 1015 of these. In Figure 16
is reported figuratively the viewing detection of dark photons.

Figure 16: Possible trend of multiphoton detection of dark photons.

The point now is to understand if there are some benefits with this protocol. If we write down
the Bolzmann equation associated to the rate decay of photons, w e find

dfγ

dt
“ Γγ1Ñγp1 ` fγq ´ ΓγÑγ1p1 ` fγ1q

9 fγ1p1 ` fγq ´ fγp1 ` fγ1q

“ fγ1 ´ fγ » fγ1

(44)

where in the last step we used that Nγ " Nγ1 . Therefore, there are not advantages instead to
perform single parity measurements. This fact brings us back on the Dixit’s road. We could use
the Dixit’s protocol to reproduce the experiment at SQMS laboratory using cavities with a more
performing Q and of different size. In this way, we could be able to explore a larger regime of
possible masses for the dark matter candidate. For instance, the biggest SQMS cavity has a volume
of 209.367 cm3 and so a resonant frequency of „ 3 GHz. With the same calculation we made
in (43), we find that Ndf » 1017. Therefore, increasing the volume of the cavity we are changing
the mass regime and there will be more7 dark photons inside the cavity. We might expect that the
photon rate increases.

7Always if we assume that ρDM » 0.4 GeV{cm3.
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5 Conclusion
In this report we did a kind of review about the progress that the SQMS group achieved in the
last few years about the SRF cavities for GW detection. We saw in Figure 8 that the supremacy
for the projected sensitivity in the GW detection, is detained by the theoretical work of Berlin
et al. in Fermilab. We analyzed briefly the possibility to consider also a qubit inside the cavity
in order to understand if it could have an advantage in the sensitivity. The hope is that is does
but a deeper study is necessary. A hard theoretical work which is fundamental to study is the
direct qubit-GW interaction. To understand this interaction would mean to unify the linearized
GR with quantum formalism of qubit. In the second part of this report we reviewed the Dixit’s
experiment for searching dark photons with superconducting qubit trying to understand if there are
some advantages to use multiphoton Fock modes. The answer we gave ourselves is no. A possible
project for the Master Thesis of the author is to reproduce at Fermilab, the Dixit’s setup of the
experiment and use different cavities more performing in terms of Q and Vcav. In this way we
could have a greater sensitivity, we could exclude or detect (we hope) dark photon for different
regime of mass mdf “ ℏωs{c291{Lcav.
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A TT-frame and proper detector frame
Let’s parameterize the trajectory of a particle in a curved space-time gµν with the proper time τ :
xµpτq. The geodetic equation,

d2xµ

dτ2 ` Γµ
νρpxq

dxν

dτ

dxρ

dτ
“ 0 , (45)

21



describes the equation of motion for this particle in the curved background, in absence of external
non-gravitational forces. If we consider two nearby geodesics txµpτq, xµpτq ` ξµpτqu and we take
the difference between them, we find the equation of geodetic deviation,

D2ξµ

Dτ2 “ ´Rµ
νρσξ

ρuνuσ (46)

which shows that a tidal gravitational force, determined by the Riemann tensor, is experienced by
two time-like geodesics.

A.1 The TT-frame
There exist a gauge where GWs have an especially simple form, the TT gauge. We denote the
corresponding reference frame as the TT frame and we ask what it means, physically, to be in the
TT-frame. From the geodetic equation (45) we see that if a test mass is at rest at τ “ 0 (so that
dxi{dτ “ 0q then

d2xi

dτ2

ˇ

ˇ

ˇ

τ“0
“ ´

”

Γi
νρpxq

dxν

dτ

dxρ

dτ

ı

τ“0

“ ´

”

Γi
00

´dx0

dτ

¯2ı

τ“0
.

(47)

Writing gµν “ ηµν ` hµν and expanding to first order in hµν we find a simple form for Christoffel
symbol so that

Γi
00 “

1
2p2B0h0i ´ Bih00q . (48)

In the TT gauge this quantity vanishes, because both h00 and h0i are set to zero by the gauge
condition. Therefore, if at time τ “ 0 we have dxi{dτ “ 0 hence d2xi{dτ2 “ 0. So dxi{dτ
remains zero at all times. That shows that a particle which was at rest before the arrival of the GW,
remains at rest even after the GW passed. A physical implementation of TT gauge can be obtained
using the free test masses themselves to mark the coordinates.

A.2 The proper detector frame
The TT frame has the advantage that GWs have a very simple form in it. However, it is not the
frame normally used by an experimentalist to describe its apparatus. In a laboratory, positions are
not marked by freely falling particles; rather, after choosing an origin, one ideally uses a rigid ruler
to define the coordinates. Conceptually, the simplest laboratory to analyze is one in free fall in
the total gravitational field. If we restrict our attention to a sufficiently small region of space we
can choose coordinates so that even in presence of GWs, the maetric is flat. We can construct
such a freely falling frame along an entire geodetic using the FNC. The corrections to flat space
present only from the second order of derivatives. We can see that if x is the typical variation
scale of the metric, so that Rµνρσ “ Op1{x2q hence the corrections to the flat metric are Opr2{x2q,
where r “ xixi. If we want to find the metric for Earthbound detector we can explicitly write the
coordinate transformation form the inertial frame to the frame which is accelerating and rotating,
and transform the metric accordingly. We find, up to second order in r, that

ds2 » ´ dt2p1 `

inert. acc.
hkkikkj

2a ¨ x `

grav. redshift
hkkikkj

pa ¨ xq2 ´

rotation t-dilate
hkkkkikkkkj

pΩ ˆ xq2 q

` 2dtdxi
´

Sagnac effect
hkkkikkkj

ϵijkΩjxk ´
2
3R0jikx

ixk
¯

` dxidxj
´

δij ´
1
3Rikjlx

kxl
¯

.

(49)
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B GW sources
Possible sources of GWs in the frequency range of MHz ˜ GHz are binary merges of ultralight
compact objects with mass M À 10´11Md and GWs emitted by the superradiant axion cloud
around spinning primordial black holes, corresponding to masses of M „ 10´4Md. We report
below two pictures as examples of coherent and stochastic sources of GWs.

(a) Coherent sources.

(b) Stochastic sources.
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