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Abstract

In this report is present the work I have performed during the time I spent an

intern at the Fermilab National Accelerator Laboratory (FNAL) as a part of

the Italian Summer Students program. During this internship, I have worked at

the Technical Division inside the Fermilab laboratory under the supervision of

Emanuela Barzi and the co-supervision of Reed Teyber from the Lawrence

Berkeley National Laboratory (LBNL). I also received help from Joseph

DiMarco, Maxime Marchevsky and Steve Krave, whom I would like to

personally thank. My job has been to analyse the data provided by LNBL’s

magnets looking for events that resembled the quench, hoping to have a better

understanding of the quench and hoping to see if we could find other events

generated by a current redistribution that looked similar to the quench.
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Chapter 1

Theoretical introduction

1.1 Superconducting magnets

A superconducting material is a material which achieved the state of superconductivity,

a state of matter that causes the electrical resistance in the material to reduce to

0. Therefore, the current inside superconductors flows without resistance, making

it possible to generate higher magnetic fields, reaching also ∼ 15 T.

Superconductors are of extremely importance in the physics world, especially

in the High Energy Physics department, because the strong magnetic fields

generated by the superconductors can provide a strong focusing and bending

of the beam. Superconducting magnets are used in particle accelerators, because

in a circular collider the beam has to be accelerated, and for that RF cavities are

used, but it also needs to be bent and focused, and this is where the superconducting

magnets come in. Magnets are used also in other HEP experiments, for example

the g − 2 experiment at Fermilab, where a muon beam has to be bent in order

to run through a circular ring.

Despite all the pros of using a superconducting material in experiment,

there is a big con. Superconductors behave in a superconducting way only in a

certain range of temperature, current density and magnetic field, which is called

the critical surface. The range of temperatures inside the critical surface is very

low, as can be seen in Figure 1.1. The magnets used for the Large Hadron

Collider require 1.9 K to provide a magnetic field of 6.5 T, whereas the world

record magnet built at Fermilab (Figure 1.2) provides at the same temperature

a magnetic field of 14.6 T

1.2 Quench

As previously stated, a superconducting material exists only inside a certain range

of temperature, current density and magnetic field. During the lifetime of the

magnet, it happens that one of these three parameters exits the allowed range of

1
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Figure 1.1: Critical surface of Nb–Ti and Nb3Sn conductors

Figure 1.2: The world record Nb3Sn magnet built at Fermilab, which provides
14.6 T at 1.9 K
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Figure 1.3: A photo of the Quench Antenna that provided me the data for the
analysis on the left; a scheme of the same antenna on the right

the critical surface (usually the temperature rises above the threshold). When the

material exits the critical surface, quench happens. The quench is a sudden and

irreversible transition of the superconductor into the normal conducting state.

During the quench, the global temperature increases in the cable, and thus the

magnet requires re-cooling before normal operation can be resumed. The energy

stored in the magnet must be dissipated in order to protect it, because once the

quench happens, the temperature rises quickly and this would cause the magnet

to break. In order to avoid that, a resistor is switched on to bring the current

down. This process must be done immediately, otherwise the magnet would be

permanently damaged. Therefore, it is essential to predict the quench. For this

purpose, quench antennas have been developed since the 1980s.

1.2.1 Quench antennas

Quench antennas (QA) are pick-up coil array which are sensitive to changes

in the magnetic flux, and can therefore provide both quench identification and

localization. The sensitivity of quench antennas extends to both dynamic cable

events, such as strand slip-stick motion, and stationary current redistribution,

which may or may not be preceded by a mechanical event.

In my work at Fermilab I analysed the data provided by the quench antennas

at the Lawrence Berkeley National Laboratory (LNBL), which can be seen in

Figure 1.3. It is a printed-circuit-board (PCB) antenna integrated into the coil

structure of the Nb3Sn superconducting magnet. Since the antenna is close to

the magnet, the sensitivity to current redistribution, strand motion and cable

motion is increased.

During this analysis, I will be presenting data from 9 different ramps all the

way to quench.

1.3 Machine Learning and clustering

Machine Learning (ML) is a branch of Artificial Intelligence (AI) devoted at

building algorithms that learn, which means that this methods leverage data
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to improve performance on some set of tasks. Machine Learning techniques are

divided into two categories: supervised ML (SML) and unsupervided ML (UML).

SML algorithms require a training dataset, in which each entry of the dataset has

an assigned label, which specify to which category each entry corresponds. UML

is more complicated than SML, because with UML you don’t know each entry

in which category belongs, and the goal of the algorithm is to find the different

categories. For my work I had to perform Unsupervised ML, because I do not

know both the number of categories and consequently the category in which each

event belong. The goal of my analysis was to classify the different events into

clusters which shared the same features. In order to do that, I decided to use the

K-Means clustering algorithm.

1.3.1 K-Means algorithm

K-Means is a partitioning algorithm, that is an algorithm which aims at partitioning

a database D of n objects into a set of K clusters, such that the sum of squared

distances is minimized. In K-Means, each cluster is represented by the center

of the cluster. This means that k-means can be applied if we have all objects

described by numerical features. The mean value of the points within the cluster

id defined as the centroid. This algorithm works as follows:

• Choose a number of centroids k

• Arbitrarily choose k objects from the dataset D as the initial cluster centers

• Assign each object to the cluster to which the object is the most similar

based on the mean value of the objects in the clusters

• Calculate the mean value of the objects for each cluster

• Repeat until there’s no change in the cluster centers

This algorithm is really efficient, as it is O(tkn), where t is the number of

iterations and n is the number of objects, because it is linear with k, whereas

other algorithms like PaM are O(k(n−k)2). The clusters have a spherical shape,

because we similarity between points is evaluated using the euclidean distance.

The weakness of this method is that we need to specify k, so we include a bias,

because we force the algorithm to select a specific number of clusters. We could

think of executing k-means a number of times, always increasing the value of k,

and selecting the value for which the cost function is the lowest. The problem

with this method is that the minimum is found when k=n, i.e., we have each

event clustered alone. Therefore, this approach cannot be used. Luckily, we can

perform different tests to find the optimal value of k, which are:

• k-elbow method
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Figure 1.4: Example of an elbow plot, which shows the optimal value k = 7

• Silhouette analysis

• WSS cross validation

• Consistency test

k-elbow

The k-elbow method states that increasing the number of clusters can help to

reduce the sum of within-cluster variance of each cluster. We consider as the

optimal value of k the value for which the slope of the cost function changes the

most, as we can see from Figure 1.4.

Silhouette

The silhouette analysis is an intrinsic method, which evaluates how well the

clustered are separated and how compact they are. For each object i in the

dataset D we compute a(i) as in Equation (1.3.1)

a(i) =
1

|CI | − 1

∑
j∈CI ,i ̸=j

dist(i, j) (1.3.1)

The silhouette coefficient of every object tests the compactness of the cluster in

which each object is located. We want a(i) to be as low as possible, because it

means that the cluster is compact.

We then evaluate b(i) as in Equation (1.3.2)

b(i) = min
j ̸=i

1

|Cj |
∑
j∈Cj

dist(i, j) (1.3.2)
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The silhouette coefficient of the object i is s(i) (Equation (1.3.3))

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(1.3.3)

The single silhouette coefficient, which is the coefficient for each object, ranges

from −1 to +1. When the coefficient is negative, it means that the object is

closer to objects in other clusters than to objects in its own cluster, whereas

when the coefficient is close to 1 it means that the objects are well clustered. For

all the objects we evaluate s(i) and then we take the average on all the clusters.

We call this average the silhouette score, and we decide the optimal value of k

as the value for which the score is higher and the number of negative silhouette

coefficients is lower.

WSS cross validation

The Within-cluster Sum of Squares Cross Validation is a method that consists

on dividing the dataset into m < n parts, and then using m− 1 parts to obtain

a clustering model. The remaining parts are used to test the quality of the

clustering. For each point in the test set we find the closest centroid and then we

use the sum of squared distance between all points in the test set and the closest

centroid to measure how well the model fits the test set. We repeat this analysis

m times for each k, and we select the optimal k as the value for which the slope

of the cost function changes the most, same as we did for the elbow method.

Consistency

Finally, the consistency test is a way to measure if the clusters are reproducible.

For each k we try to do the same clustering N different times, with N usually in

the order of 100. We evaluate the standard deviation of the number of events in

the biggest cluster, and the optimal value of k is the one for which the standard

deviation is the lowest, because it means that at each iteration we generate similar

clusters.



Chapter 2

Event and feature selection

The purpose of my analysis was to find events along the ramp which shared

some features with the quench. I couldn’t work on a time series data, because

any Machine Learning algorithm requires single separate events. In this section

I will be explaining how we selected those events and how from those events

we extracted some peculiar features, which will then be fed to the K-Means

clustering algorithm which will help on identifying the representative events.

2.1 Event Selection

The data was recorded with a sampling frequency of 25 kHz, and we defined an

event as follows:

A peak in the voltage is considered an event only if a spike above a certain

threshold is matched to a spike under a negative threshold within 40 µs.
The picture below (Figure 2.1) shows what I mean. With a chosen threshold,

we can see that using this definition for the events we eliminate any possible noise

fluctuation.

2.1.1 Filter

I started my analysis looking at one single ramp, the one I will call Antenna

9. The voltage recorded along the ramp is presented in Figure 2.2. A closer

look on the voltage allows to observe the frequency of the noise oscillation. This

background noise has a frequency of roughly 4.54 kHz, calculated averaging over

the 9 periods shown in the Figure 2.3. In order to reduce this background, we

decided to implement a 6th order bandstop Butterworth filter. For this filter, we

used the butter function provided by the scipy package of Python [1]. The cutoff

frequencies were chosen to be 4 kHz for the lowest and 6 kHz for the highest, so

that the frequencies in the 4 − 6 kHz range have been reduced. The effect the

filter has on the signal can be seen in Figure 2.4. We can note that the amplitude

7
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Figure 2.1: The comparison between an event (on the left) and a fluctuation
which is not considered to be an event (right)

Figure 2.2: Voltage along the ramp by Antenna 9

of the oscillations has been reduced, because most of the waves oscillating at the

background noise frequency has been eliminated. In the following, both the raw

and the filtered signal has been analysed.
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Figure 2.3: A closer look on the voltage along the ramp, which allows to observe
the background noise oscillation
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Figure 2.4: Comparison between the unfiltered (blue) and the filtered signal
(orange) after applying the 6th order Butterworth filter

2.1.2 Threshold analysis

As I stated before, we considered a spike in the voltage to be an event only if

a peak above a positive threshold was matched to a peak under the negative

threshold within 40 µs. Since we did not know in advance what was the optimal

threshold, I decided to test different values of threshold, between 1 mV and

4 mV, using steps of 0.2 mV. Once again, I will be presenting the results only

for Antenna 9, and these results are in Table 2.1. Figure 2.5 shows the events

selected by each threshold, in the 190− 260 s region of the ramp.

As expected, the yields are higher for the raw signal and for lower thresholds.

Since a Machine Learning technique requires a large number of events, we decided
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Figure 2.5: A zoom in the voltage distribution of Antenna 9, showing the different
events, for both raw (left) and filtered (right) signal. Each colour represents a
threshold, and the coloured dots represent the events
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Threshold (mV) Raw data Bandstop filter data

1 147 82
1.2 90 66
1.4 67 51
1.6 51 45
1.8 36 35
2 31 32
2.2 27 25
2.4 24 18
2.6 22 17
2.8 20 14
3 17 14
3.2 13 13
3.4 13 11
3.6 12 10
3.8 11 7
4 10 6

Table 2.1: Table presenting the number of events found for each threshold, for
both the filtered and the raw signal

to use the lowest threshold, in order to have the highest number of events. This

same selection was used for all the ramps. We also decided to use the filtered

signal. In the end, from the nine ramps we obtained 2491 events.

Once I have selected all the events, I generated a window around each one

of them. All the windows have the same length, which is 5.2 ms, and lasts from

2.4 ms before the peak to 2.8 ms after the peak. An example of a windowed event

and a quench event can be seen in Figure 2.6. The 9 quench events are selected in

a different way, and this can be noted by looking at the plot in Figure 2.6. Since

after the quench the current must be dissipated, we can’t consider too much

time after the quench into the windowed event, because otherwise we would

be analysing non-physical data. Therefore, the window around each quench is

generated in a different way, keeping the windows of the same length (5.2 ms) but

changing the time at which each window starts. We can see all the nine different

quenches in Figure 2.7.

2.2 Features

The K-Means clustering algorithm requires a matrix whose entries are values

which will then be used to distinguish between the different clusters. These

values are what I will call features.

The features must be representative of each event, showing some characteristics

that will help on generating clusters. In the following I will give a brief description
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Figure 2.6: An example of a windowed event (left) and an example of a quench
event (right)

of the features selected.

2.2.1 Voltage features

The first features we selected were the features regarding the voltage distribution.

Figure 2.6 shows the voltage distribution for one event, and from that distribution

many features can be extracted.

i) Maximum voltage: it is the value of the maximum voltage in the windowed

event. It can be useful because the quench events have a higher peak in the

voltage distribution, therefore this feature could help identifying events that

look similar to the quench

ii) Maximum voltage: it is the value of the minimum voltage in the windowed

event. It can be used instead of the maximum value because sometimes the

negative spike is higher in absolute value than the positive spike

iii) Absolute maximum: it is the absolute maximum value of the voltage in the

windowed event. It’s better than both maximum and minimum

iv) Maximum integrated voltage: it is the highest value of the integral of the

voltage. The integral of the voltage is a useful variable which can give

informations on the magnetic flux received by the quench antennas. The

integral is evaluated using the cumulative trapezoid method provided by

the scipy package of Python [2]

v) Minimum integrated voltage: it is the lowest value of the integral of the

voltage

vi) Absolute maximum integrated voltage: it is the absolute highest value of

the integral of the voltage
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Figure 2.7: The 9 quench events, one for each ramp

vii) Norm of the voltage: it is the euclidean norm of the voltage array, evaluated

as ∥v∥ =
√∑

i v
2
i , using the linalg.norm function implemented in the

numpy package [3]

viii) Norm of the integrated voltage

ix) Definite integral of the voltage: it provides information on the total amount

of magnetic flux received by the quench antennas

2.2.2 Signal shape features

We then focused on features regarding the shape of the signal. These four features

can help us understanding how fast a signal is.

i) Time 80: it is the difference between the time the voltage reaches 80% of

the peak and the time of the absolute maximum. The 80% mark is selected

after the peak, so that we look only at how fast the voltage restore itself to

its normal value after the spike

ii) Time 50: it is the difference between the time the voltage reaches 50% of

the peak and the time of the absolute maximum

iii) Time 30: it is the difference between the time the voltage reaches 30% of

the peak and the time of the absolute maximum

iv) Time 20: it is the difference between the time the voltage reaches 20% of

the peak and the time of the absolute maximum
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2.2.3 Frequency features

Finally, we focused on features regarding the frequency distribution of each event.

The frequency distribution can be useful because some of the quench events, as

can be seen in Figure 2.7, show a peculiar 1 kHz oscillation. We want to find

features that can provide information on whether a 1 kHz oscillation occurs in

the signal distribution.

In order to extract features on the frequency distribution, we decided to use

the Continuous Wavelet Transform (CWT). We did not use the Fourier Transform

(FFT) because the FFT is localized only in frequency and not in time. Therefore,

we lose all the information on when a specific frequency occurs in the distribution,

and since the quenches show a 1 kHz oscillation at the time in which the voltage

is maximum, it is important to have as much informations as possible on both

the time and the frequency. This is where the CWT comes in handy, because the

wavelet measurement tells something about the temporal extent of the signal, as

well as something about the frequency spectrum of the signal. Since Heisenberg’s

uncertainty principle states that one cannot measure both the frequency and the

time at the same time, the CWT provides a lesser precise measurement of both

time and frequency, whereas the FFT provides a theoretically infinitely precise

measurement of the frequency, losing all the informations on the time. We have

selected five features:

i) Lead frequency from the CWT analysis: it is the frequency with the highest

number of occurrences in the frequency distribution

ii) Number of peaks in the frequency distribution at the time when the voltage

was the highest: it is a feature that uses the property of the CWT to

extract information on both time and frequency. It evaluates the frequency

distribution at the time in which the peak in the voltage occurs, and it

looks for the peaks in the distribution using the function find peaks of the

scipy.signal package [4]

iii) Highest peak in the frequency distribution at the time when the voltage is

higher: it’s not the highest frequency when the voltage was higher, because

otherwise it would mostly coincide with the Lead frequency, but it is the

highest peak, therefore it requires the frequency distribution to have at least

one peak. If no peaks are found, this feature returns 0

iv) Standard deviation of the frequency distribution at the time when the voltage

is the highest

v) Number of times the frequency of 1 kHz is found in the frequency distribution

at the time when the voltage is the highest: it gives an idea on how much

the 1 kHz frequency is present in the distribution, which we have seen to

be a peculiar characteristic of the quench. We consider all the frequencies
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in the 0.75 − 1.25 kHz, because the frequency of the quenches isn’t exactly

1 kHz

The features ii) − v) are all features which consider the frequency distribution

at the time when the voltage reaches its peak. It is important to consider that

time between the signal is very short, lasting usually no more than a couple of

milliseconds, and it’s in those milliseconds that we can extract informations in

order to match some events with the quenches.

2.2.4 Plots displaying some features

Non-quench event

The first example is shown in Figure 2.8. The top left plot shows the voltage

distribution, in which the absolute maximum and its time have been highlighted

in yellow. The red dotted line represent the voltage at 20% of its peak and its

corresponding time. The difference between the red and the yellow vertical lines

is the feature called time 20. The other time features (Section 2.2.2) are not

represented. The top right plot displays the integral of the voltage, in which

the dotted yellow line represents the absolute maximum value of the integrated

voltage. The bottom left plot shows the CWT analysis. The white plot above

the background is the voltage, which allows us to see the frequency distribution

at the time when the voltage was the higher. The lead frequency is the frequency

which appears with the most intense shade of red. In this example is around

7.6 kHz. Finally, the bottom right plot shows the frequency distribution at the

time in which the voltage was the highest. It can be seen that the
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Figure 2.8: Example of some selected features for an event
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Figure 2.9: Example of some selected features for a quench event

Quench event

An example of a quench event can be found in Figure 2.9. We can recognize the

same features discussed in the earlier section for the non-quench event. There

are a couple of things worth discussing. The first one is the absolute maximum

value of voltage (and consequently of integrated voltage). We can see that for

the quench, this values are much larger than they are for the non-quench event.

The second one can be seen from the frequency distribution. The lead frequency

is around 4.5 kHz, which is the frequency of the noise. However, we can observe

that the frequency distribution at the time when the voltage was the highest

shows a peak at a frequency close to 1 kHz. This is what we expect to see with

those quenches and other events that show current redistribution.
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Chapter 3

Machine Learning analysis

In this section I will present the clustering analysis we performed on the feature

matrix generated as per Section 2.2. We have selected 18 features, but it is

clear that we can’t use all those features for the clustering. The first reason is

that many features are strongly correlated to each other, for example maximum,

minimum and absolute maximum. For the clustering, we don’t want to use too

many features, because otherwise the algorithm wouldn’t have any freedom to

learn, and we want to use only features which don’t have a strong correlation to

each others. We tested two combinations of features, one with many features and

one with few features. I will present both analysis above

3.1 7-features analysis

We decided first to perform the analysis using eight features. The eight features

selected are abs max (the absolute maximum value of voltage), def int (the

definite integral of the signal), time 20 (the time between the maximum and 20%

of the peak), lead freq (the lead frequency from the CWT analysis), num peaks

(the number of peaks in the frequency distribution at the time when the voltage

was maximum), std freq (the standard deviation of the frequency distribution

at the time when the voltage was maximum) and occ 1000 (the number of times

the frequency of 1 kHz is found in the frequency distribution at the time when

the voltage is the highest).

3.1.1 Data visualization

In Figure 3.1 we can see the correlation between all the seven features. We have

removed the features that showed a strong linear correlation: for example, we

noted that high peak and lead freq had a strong linear correlation. Therefore,

we decided to use only the latter of those. Figure 3.2 shows the distribution of

the features along the 9 different ramps, with the dotted red lines representing

17
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Figure 3.1: Correlation plot for all the features. The main diagonal represents
the normalized distribution for each feature

the quench events. We can see that the lead frequency distribution shows many

events with a frequency of 10 kHz. This happens because we are performing

the CWT analysis using frequencies only in the 0.1− 10 kHz. This suggests that

lead freq will represent a ”biased” feature, because we are forcing the frequency

to be lower than a certain threshold. Nevertheless, this feature is useful because it

tells us he events in which the lead frequency is high. Furthermore, we note that

some of the quenches have an absolute maximum higher than the other events,

as well as a high value of occ 1000, as expected.

PCA

In order to better visualize the data, a Principal Component Analysis (PCA)

was implemented. The PCA is a tool that allows to visualize the data coming

from many variables (i.e, the features) using less variables, in a way such that

all the variance of the original variables is still explained. We decided to use

3 variables to describe all the variance of our 7 features, having noticed that 3

variables explained more than 90% of the variance of all the data. Figure 3.3

shows the correlation between the new variables, whose decomposition can be
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Figure 3.2: Distribution of features along the ramps, with each ramp ending with
a dotted red line. The x axis represents the number of the event

seen in Table 3.1. We can see that the first variable (PC1) is made of mostly

lead freq, PC2 is made mostly of time 20, which is the dominant component

also of PC3. We see an almost flat distribution in Figure 3.3 for PC1, which is

also the component with the most variance.

Variable PC1 PC2 PC3

abs max 0.021 0.537 0.55
def int -0.007 -0.084 -0.062
time 20 0.006 -0.703 0.687
lead freq -0.998 0.027 0.040
num peaks 0.011 -0.171 0.089
std freq 0.005 0.191 0.212
occ 1000 0.054 0.378 0.410

Table 3.1: Decomposition of the variables after the PCA

Hopkins statistic test

The Hopkins statistic test [5] is a test which shows if a dataset is fit to be clustered.

Given a set X of n data points, considering a random sample of m ≪ n points

with members xi, if we generate a set Y of m uniformly randomly distributed

data points and we define ui as the distance of yi ∈ Y from its nearest neighbour

in X and wi as the distance of m number of randomly chosen xi ∈ X from its
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Figure 3.3: PCA using 3 variables (first three plots) and cumulative explained
variance (bottom right plot)

nearest neighbour in X, then by defining

H =

∑m
i=1 u

d
i∑m

i=1 u
d
i +

∑m
i=1w

d
i

(3.1.1)

d is the dimension of the dataset, 1 − H is the null-hypothesis. If it’s close to

0 (i.e., if H is close to 1), then the data are likely to be suited for clustering.

The Hopkins statistic test for this dataset returned H = 0.81, which means that

this dataset could be suitable for a clustering algorithm. However, this does not

guarantee that the dataset is clusterizable, but it only states that the dataset is

not likely to be generated by a regularly spaced distribution.

3.1.2 Optimization: finding the best K

As explained in Section 1.3.1, there are many ways to test which is the optimal

number of centroids K. We tested all the four different methods, and the results

will be presented in the following

i) k-elbow: optimal value is K = 6, which is the value for which the slope of

the cost function changes the most. See Figure 3.4

ii) Silhouette (Figure 3.5(a))

• Score: optimal value isK = 3, because it is the highest

• Negative values: optimal value is K = 3, because it is the lowest

iii) Consistency: optima value is K = 3, because it is the lowest (Figure 3.6)
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Figure 3.4: k-elbow analysis

Method Best-K Score

Elbow 6 56
Silhouette scores 3 0.4

Silhouette negative values 3 33
Consistency 3 3.23

WSS 6 50

Table 3.2: Summary of the results for the 7-features analysis

iv) WSS cross validation: K = 6, because it is the value for which the slope

changes the most(Figure 3.6)

Table 3.2 summarizes the optimization of K. We have two different results,

and of these two we choose K = 3. We make this choice because looking at

the silhouette (Figure 3.5(b)) for K = 6 we have one cluster made mostly of

negative elements. This suggests that the clustering has not been optimal, and

this suggestion is also confirmed by the average score, which is 0.29, much less

than the score for K = 3. Using 3 clusters instead we have a high score for all the

other tests, and also the silhouette visualizer shows all 3 clusters having average

score well distributed with respect to the score of each event. I will now present

my analysis using 3 centroids.
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(a) Silhouette score (left) and negative values (right) analysis
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(b) Silhouette visualization

Figure 3.5: Silhouette test: score (3.5(a)) and visualization (3.5(b))
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Figure 3.6: Consistency (left) and WSS cross validation (right) analysis
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3.1.3 K = 3 analysis

Having chosen 3 centroids, we performed k-means using K = 3. The size of the

clusters is as follows:

• Cluster 0 (color: Red) : 1520 events, 3 quenches

• Cluster 1 (color: Blue): 570 events, 1 quench

• Cluster 2 (color: Green): 401 events, 5 quenches

The centroid distribution along the ramp can be seen in Figure 3.7. We note

that the nine quenches aren’t clustered all together, but we see 3 quenches in

cluster 0, 1 quench in cluster 1 and 5 quenches in cluster 2. Figure 3.8 shows

where each quench has been clustered. We can see that quenches 3, 5 and 7

are clustered together, and this makes sense because they are very similar to

each other, whereas the first quench is clustered alone, and this makes less sense

because its features make it similar to quench 9. Quench 2 and quench 6 are also

very similar, but they are clustered in different clusters.

To check the validity of our results, we also looked at the PCA, the parallel

plot and the box plots.PCA and parallel plots are shown in Figure 3.9. It can

be seen that the clusters are generated basing only on the first variable of the

PCA (PC1), which, as we had seen from Table 3.1, is made almost completely

of lead freq. We note this because the first two plots of the PCA show the

clusters well separated, whereas the third plot, which shows PC2 vs PC3, has all

the events spread randomly. The parallel plot and the box plots (Figure 3.10)

also give us the same information, because we see that the only feature for which

there is a clear separation between the clusters is lead freq. From the box plots

we can also see that there are many events in the clusters that are far away from

the mean values. To have so many outliers means that the clustering has not

been efficient.
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Figure 3.7: Silhouette (left) and centroid distribution along the ramp (right) for
k-means using 3 centroids. The red crosses are the quench events
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Figure 3.8: Plots representing in which cluster each quench belongs to

Summary

From all the considerations made above, we can say that the clustering with 3

centroids didn’t provide acceptable results. The clustering of the quenches looks

random, because we would expect some of them to be clustered together, and the

whole clustering is based only on one feature, which is lead freq. This feature

isn’t probably the best feature to describe the events because it is a ”biased”

feature, as we discussed in Section 3.1.1. Therefore, this whole clustering analysis

is affected by that bias, and consequently the obtained results could not have a

true physical meaning.
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Figure 3.9: PCA and parallel plot for the three clusters
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Figure 3.10: Box plots for the three clusters
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3.2 3-features analysis

Unsatisfied with the results from the previous analysis, we decided to perform

an analysis using only three features, one regarding the voltage, one regarding

the shape and one regarding the frequency. The features that best captured the

properties of the different events are abs max (the absolute maximum value of

voltage), time 20 (the time between the maximum and 20% of the peak) and

occ 1000 (the number of times the frequency of 1 kHz is found in the frequency

distribution at the time when the voltage is the highest). We performed the

analysis the same way we did for the 7 features.

3.2.1 Data visualization

In Figure 3.1 we can see the correlation between the three features. We note

that the events with a high value of absolute maximum voltage tend to be have a

strong component of 1 kHz in the frequency distribution. Figure 3.12 shows the

distribution of the three features along the ramp.

Since we now have only three features, we don’t need to use a PCA. This is

a great advantage compared to the prior analysis, because now we can link the

events in the clusters directly to the features.

Hopkins statistic test

The Hopkins statistic test (Equation (3.1.1)) for this dataset returns a value

H = 0.97. Therefore, this dataset is more suited to a clustering than the dataset

generated by the 7 features.

3.2.2 Optimization: finding the best K

Same as we did for the previous analysis, we tested the four different methods to

evaluate the optimal value of K.

i) k-elbow: optimal value is K = 6, as can be seen from Figure 3.13

ii) Silhouette (Figure 3.14):

• Score: optimal value is K = 3

• Negative values: optimal value is K = 3

iii) Consistency: optimal value is K = 3

iv) WSS Cross Validation: optimal value is K = 6

Table 3.3 summarizes the optimization of K. We have two different results, and

of these two we choose K = 3. This choice was made because for six centroids
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Figure 3.11: Correlation plot for all the features. The main diagonal represents
the normalized distribution for each feature

we have the highest number of negative values and the lowest silhouette score.

Therefore, we decided to use for this analysis K = 3 as well.
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Figure 3.12: Distribution of features along the ramps, with each ramp ending
with a dotted red line. The x axis represents the number of the event
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Figure 3.13: k-elbow analysis
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Figure 3.14: Silhouette test: score (3.5(a)) and visualization (3.5(b))
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Figure 3.15: Consistency (left) and WSS cross validation (right) analysis

Method Best-K Score

Elbow 6 11.98
Silhouette scores 3 0.41

Silhouette negative values 3 42
Consistency 3 14.6

WSS 6 33

Table 3.3: Summary of the results for the 3-features analysis

3.2.3 K = 3 analysis

Having chosen 3 centroids, we performed k-means using K = 3. The size of the

clusters is as follows:

• Cluster 0 (color: Red) : 1510 events, 3 quenches

• Cluster 1 (color: Blue): 813 events, no quenches

• Cluster 2 (color: Green): 168 events, 6 quenches

The centroid distribution along the ramp can be seen in Figure 3.16. We note

that the nine quenches aren’t clustered all together, but we see 3 quenches in

cluster 0 and 6 quenches in cluster 2. Figure 3.17 shows where each quench has

been clustered. The nine quenches are clustered as we would expect, because we

have three low-voltage quenches clustered together, whereas the remaining six

quenches show a strong component of the kHz oscillation.

To check the validity of our results, we also looked at the pair plot, the

parallel plot and the box plots. As previously stated, there is no need for a PCA,

therefore we can visualize the events simply in the pair plot. We note that the

first two plots, which show time 20 vs the other two features, show the events
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Figure 3.16: Silhouette (left) and centroid distribution along the ramp (right) for
k-means using 3 centroids. The red crosses are the quench events
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Figure 3.17: Plots representing in which cluster each quench belongs to

well separated. The third plot (occ 1000 vs abs max) doesn’t distinguish well

between the first two clusters (0 and 1), but it shows that the events with a

high value of maximum voltage and of occ 1000 are all clustered together, in

the same cluster where the majority of quenches is (cluster 2). The parallel plot

and the box plots (Figure 3.19) show the features well separated: cluster 0 has

events with low abs max, low time 20 and low occ 1000; cluster 1 is made of

events with the lowest value of abs max and occ 1000, but with the highest vale

of time 20; cluster 2 has events with the highest value of abs max and occ 1000,

with its time 20 value is higher than cluster 0. The fact that we don’t have as

many outliers as we did for the previous analysis shows that this clustering has

been more efficient.
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Figure 3.18: Correlation and parallel plot for the three clusters
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Figure 3.19: Box plots for the three clusters

Plots

Having validated the results of the clustering, we plotted many random events

for each cluster to see if we could gain some information on what each cluster

represents.

Figures 3.20 to 3.22 show 25 random event for each cluster. We can see

some common characteristics for each cluster:

• Cluster 0 (Figure 3.20): they all look like mechanical events, because they

show a spike followed by a fast decrease. Three quenches are found in this

cluster

• Cluster 1 (Figure 3.21): mostly low-amplitude events, no quenches

• Cluster 2 (Figure 3.22): events which look like they could be generated by
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Figure 3.20: 25 random events for cluster 0

a current redistribution within the cable, much as the quenches

From this considerations, we can say that current redistribution within the

cable looks to happen along the ramp. These events are similar to the quenches,

and that is why they have been clustered together with the quenches. The quench

is an event in which the current redistributes within the cable, but the different

between the quench and the other events is that the quench events don’t recover

themself, and the voltage doesn’t return to the normal value after.
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Figure 3.21: 25 random events for cluster 1
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Figure 3.22: 25 random events for cluster 2
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3.3 Summary and conclusions

Both the 3-feature and the 7-feature analysis showed that there are some events

clustered together with the quenches. However, only the 3-features result can be

considered, because the 7-features clustering wasn’t optimal. From this analysis,

we can then affirm that current redistribution appears to happen along the ramp,

and sometimes it is recovered, whereas other times quench happens. This result

could be useful in the future, because it will inform on the performance limits of

the Nb3Sn magnets.
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