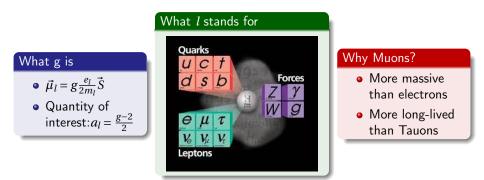
Final report Eddy currents analysis in the Muon g-2 experiment

Nicola Valori


15/11/2022

Fermilab & University of Pisa

イロト イロト イヨト イヨト

A brief introduction on the Muon g-2 experiment

What is the reason why we are really interested in g-factor?

- It is possible to perform a very precise comparison between Theory and Experiments
- It could lead us to New physics beyond the Standard Model

Theory and Experiment: A phenomenological Journey

First Theoretical approach

• Dirac equation Prediction(1928): $a_l = 0$

First experimental discrepancy

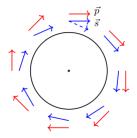
• Kusch & Foley(1948): *a_e*=0.00119(5)

Standard Model Improvements



Figure: The lowest Feymann Diagram order for each interaction

- New approach in the studying of particle physics
- Virtual particles as mediators for interactions
- Possibility to explore further orders beyond Dirac tree level term
- First order correction(Schwinger(1947)): $a_l = \frac{\alpha}{2\pi}$


Question: Is this theory in agreement with the experiments ?

Comparison between latest achievements					
	Theoretical prediction	BNL result	RUN 1 result		
a_{μ}^{SM}	$116591810 \times 10^{-11}$	11659208×10^{-10}	$116592061 \times 10^{-11}$		
$\delta_{a_{\mu}}$	370 ppb	540 ppb	465 ppb		

(日) (四) (三) (三) (三)

FNAL Muon g-2 Experiment

Quantity of interest

- $\vec{w_a}$: the difference between momentum and spin angular frequency
- Main goal is to measure $\vec{w_a} =$

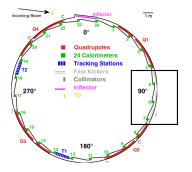

$$\frac{q}{m} \left[a_{\mu} \vec{B} - a_{\mu} \left(\frac{\gamma}{\gamma+1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2}-1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Figure: Anomalous precession frequency

My task

- Measure eddy currents contribution on the ω_a fit with Faraday rotation effect
- Reduce the errors on the RUN 1 eddy currents contribution (-27(37) ppb)

Schematic of the Muon g-2 storage ring

- Storage ring is composed by a lot of components and each of them has its role
- In this presentation we are interested in Fast Kickers.

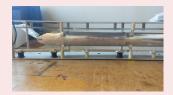
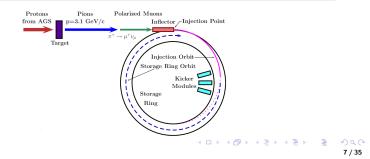
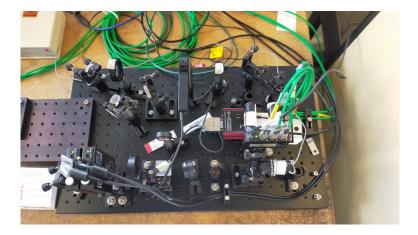
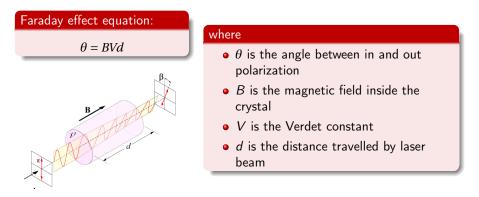



Figure: Kicker in MC-1 mezzanine

Kickers role and the reason why we are interested in them

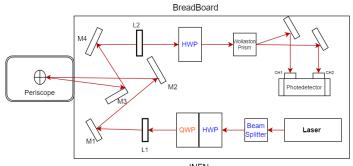

The issue in a nutshell

- We need a system of kickers in order to place the muons in the correct orbit.
- $\bullet\,$ This is achieved thanks to a \sim 4 kA current along aluminium plates lasting only 120 ns
- However this produces eddy currents hence a small spurious magnetic field.
- The goal of the project is to measure magnetic field due to eddy currents.


INFN Breadbord

Eddy currents effect is measured with a Magnetometer

The Faraday effect


We set this breadboard in order to measure magnetic field inside a crystal.

We choose d such that for B = 1.45 T (field in the ring), $\theta = 2\pi n$ in order to avoid a further rotation. We set n=4.

Measuring Magnetic field: Breadboard in a nutshell

The principle of the measurement is to send a laser light through a Verdet crystal made of Terbium Gallium Garnet(TGG) in order to study Faraday rotation.

INFN

Two different periscopes: We want analyze both in order to make a comparison.

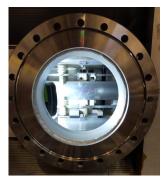


Figure: Periscope mounted in the ring

A brief description of the components

- Plastic Bridge: to reduce vibrations effect due to kicks
- Unlensed Periscope
- Lensed periscope: to avoid symmetry axis distortion between laser beam and crystal during kicks
- Teflon Bar: to give stability
- Kapton tape: to fix trolley line

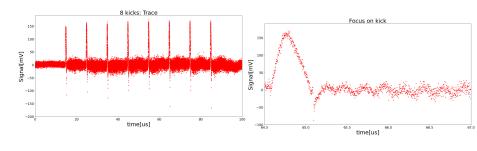
Into the ring: Preparation for acquisition

After testing the breadboard, we move it in the ring

Figure: Breadboard in the ring

Preliminary steps:

- Mount periscopes and the Breadboard
- Laser alignment
- Turn on magnetic field at 1.45 T
- Turn on the kicker 3 at 42 kV
- HWP & QWP scan in order to find the best angle

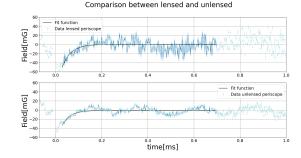

The goal of the project

Experimental setup

- Two 8 kicks' groups separated by 300 ms
- Kicks separated by 10 ms
- One kick for each muons bunch

Analysis

- Average over very long Data acquisitions
- Rebinning by 10
- Exponential fit at the end of each kick



First attempt: Fitting data

Fit function and interval

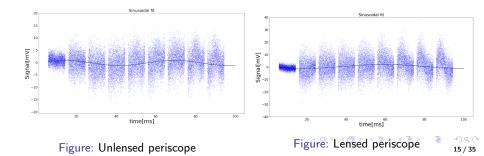
- Analysis strategy similar to Run-1
- Fit function: a + $B_{EC} \cdot e^{-\frac{(t-0.03)}{\tau}}$
- Fit interval: between 30μs and 700μs after the kick (like ω_a fit)

- Signal/noise for Unlensed periscope : ~ 27
- Signal/noise for Lensed periscope : \sim 7

14 / 35

Correction required

- Remove baseline oscillation in order to get same baseline for each kick
- Remove mechanical oscillation


First correction: Remove the baseline oscillation

What we noticed

- Baseline is not the same for each kick
- It needs to be adjusted before doing average and comparing kicks

What we did

- Remove points from signal regions (kicks)
- Sinusoidal fit over the 100ms-trace
- Subtract point by point the oscillation (~ 20 Hz) from original data

Second correction: Remove mechanical vibrations

What we noticed

- After each kick we see oscillations
- More visible thanks to FFT of exponential fit residuals
- These are due to mechanical vibrations of the periscope

What we did

- Sinusoidal fit between 0.1 and 1 ms after each kick
- Fit function describes mechanical oscillation for each kick (~ 4.5 kHz)
- Subtract point by point the oscillation from each kick

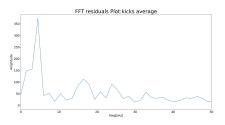


Figure: FFT example plot

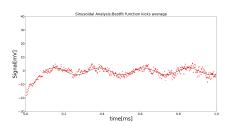


Figure: Unlensed periscope example pot

Second attempt: fitting Data

Repeat same steps as the first attempt

Fit function: a +
$$B_{EC} \cdot e^{-\frac{(t-0.03)}{\tau}}$$

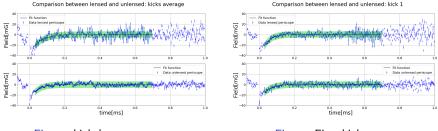
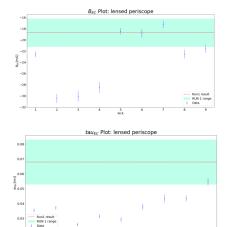
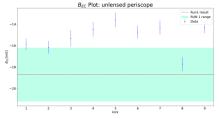


Figure: kicks' average

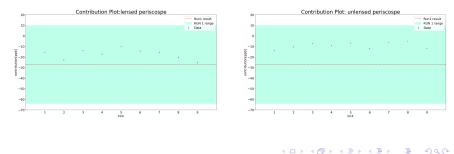

Figure: First kick


- $\bullet\,$ The green shaded band represents the associated uncertainty in RUN1 ($\sim\,6\,$ mG)
- Great consistency!

Comparison with RUN 1

Lensed periscope

Unlensed periscope



Contribution Calculus

• We want to consider the contribution of eddy currents upon the ω_a fit.

• Function:
$$\frac{\Delta \omega_a}{\omega_a} \simeq \frac{B_{EC}}{B_{tot}} \times 8.5\% \times 0.94 \times \left(\frac{\tau_k}{\tau_k + \gamma \tau_{\mu}}\right)^2$$

• We have not yet estimate systematic uncertainties

What's next?

A further improvements in Data analysis considering:

- A more complex fit function
- Study of the systematic uncertainties

Improvements in Hardware

• New Breadboard system is being tested in laboratory

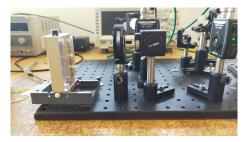


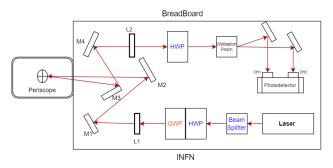
Figure: New periscope project

• I would like to extend my sincere thanks to Hogan Nguyen, Marco Incagli, Paolo Girotti, Anna Driutti and Antonio Gioiosa for their assistance at every stage of the research project.

Thank you for your attention

Backup slides

22 / 35


Periscope

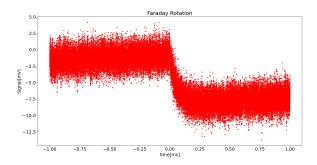
23 / 35

Measuring Magnetic field: Breadboard in a nutshell

The principle of the measurement is to send a laser light through a Verdet crystal made of Terbium Gallium Garnet(TGG) in order to study Faraday rotation.

- Beam splitter is used to improve laser beam signal
- First HWP is used to set the angle maximizing the signal.
- QWP is used to study noise.
- Polarized laser light hits the crystal and changes its polarization.
- Wollaston prism splits laser light in two beams with a defined angles.
- Photodetector collects signals and gives first beam second beam and the difference output intensities.

Preliminary test


Real experiment

- 8 bunches, one every 10 ms
- 300 ms pause
- other 8 bunches, one every 10 ms

Laboratory test

• We simulated kicker magnetic field using a coil and setting the following parameters:

WF	Ampl	Period	P.Width
Pulse	1 Vpp	10 ms	1 ms

- A-B channel[mV] vs time[ms]
- $B = 0 \implies$ signal~0

・ロト ・日ト ・ヨト ・ヨト

 B ≠ 0 ⇒ Light polarization changes ⇒ signal ≠ 0

Steps required before starting Acquisition

Different types of frameworks					
Mezzanine test	Ring no field	Ring with field			
Magnetic field simu-	Kicker set at ~42 kV	Kicker set at ~ 42 kV			
lated by a coil	(as in RUN 2-3) and	(as in RUN 2-3) and			
	Magnetic field off	Magnetic field on			

Steps required						
Laser alignment	HWP scan	QWP scan				
Setting mirrors in or- der to get a cor- rect trajectory of the laser beam	HWP angle that	Setting the QWP angle that maximize signal				

Mezzanine test: HWP scan & QWP scan

• Studying the difference between up and down signals during Faraday rotation in order to get the best angles

HWP scan

- Remove QWP polarizer
- Scan over the initial HWP angles
- Find angle that maximize signal and signal over noise
- Repeat a more carefully survey around a peak
- Choose best angle: in our case 28.5°!

QWP scan

- Set HWP best angle
- Repeat same steps as HWP scan
- Choose best angle: 36.5°

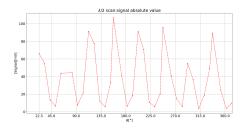
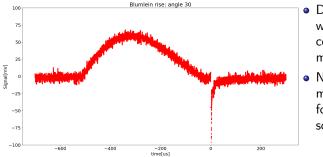
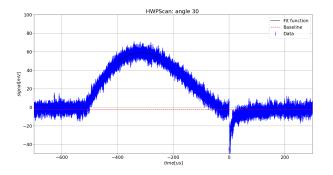



Figure: $\lambda/2$ scan: Absolute value[mV] vs angle[°]

<ロ> (四) (四) (三) (三) (三)

Amplitude: analysis method

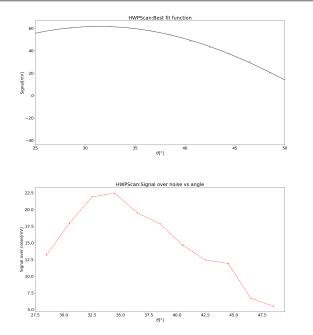


- Different waveform compared to mezzanine
- New analysis method required for Wave Plates scan

Method used to get peak and baseline for each angle:

- Baseline: taking first 10% and last 20%: average and std
- Peak: Parabolic fit around the peak (30-45%) in order to get it
- Amplitude : Difference between the peak and the baseline

HWP & QWP scan

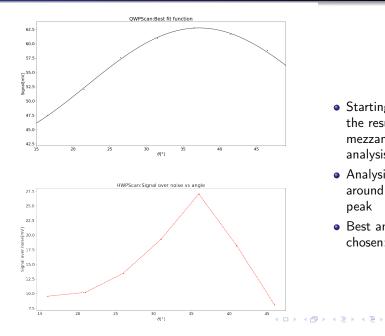


- Data Plot
- baseline
- Fit function for peaks

Angle analysis to get best value

- Sinusoidal Fit between angles and amplitudes
- Plot Signal over noise vs angle
- Choosing best angles both for HWP and QWP

HWP:Angles vs signal Plots and Fits



- Starting from the results of mezzanine analysis
- Analysis around the peak
- Best angle choosen: 31.5°

문어 소문어

30 / 35

QWP:Angles vs signal Plots and Fits

- Starting from the results of mezzanine analysis
- Analysis around the peak
- Best angle chosen: 36.5°

æ

31 / 35

A long acquisition: Looking for Eddy currents

Collected about 30k wave forms and perform an average over Data

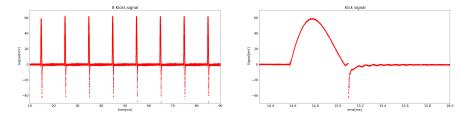


Figure: 8 Kicks:signal[mV] vs angle[°]

Figure: Focus on the first kick

We are able to see Blumlein rise and fall We saw a new detail Zooming on the end of the fall...

Got eddy currents!

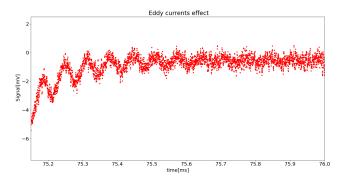


Figure: Eddy Currents effect at the end of kick

<ロト < 合 ト < 言 ト < 言 ト こ の < で 33 / 35

Magnet on and final steps

- Repeat same steps as magnetic field off framework
- Study calibration between angles and magnetic field ramp up

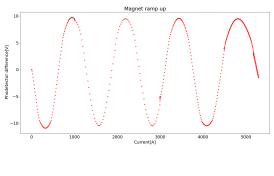


Figure: Signal[V] vs current[A]

• This is another way to see Faraday effect!

Description

- Current increases with time
- Magnetic field increases with current
- Light polarization inside crystal changes
- Relationship between Magnetic field (I) and angle

B 1 4 B 1

34 / 35

Linear fit: magnet ramp up

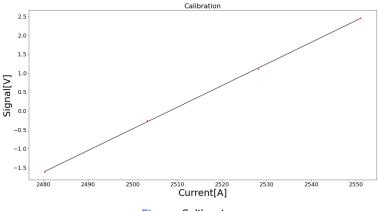


Figure: Calibration

Amplified calibration: calibration in Ampere = 0.057315(9) mV/mAcalibration in Gauss == 0.57253(9) mV/mG

・ロト ・日ト ・ヨト ・ヨト