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Abstract

The discovery that the Universe expansion is accelerated poses one of the most profound
mysteries in physics. Cosmic acceleration could be a sign of the fact that General Relativity
breaks down on cosmological scales and has to be replaced, or it could arise from an unknown
form of energy that currently dominates our Universe. That is what we call dark energy
and in this case the problem moves to the discovery of its nature. Dark Energy Survey aims
to study the nature of dark energy and to test General Relativity and cosmological models.
The cluster analysis of the first run of DES leads to results which are incomparable with
what other surveys have obtained. In particular it turns out that the matter density of the
Universe is Ωm = 0.179+0.031

−0.038, very different from the 0.3 value expected. In this work we
build a procedure that can be followed in order to understand whether the solution of DES
Y1 problem could be a selection effect or not.

1 Dark Energy
In this section we introduce what we refers to
when we talk about dark energy.
We have to start from Friedmann equations,
which are just the Einstein equation (that relates
the curvature and so the geometry of the space-
time (this information is inside the Einstein ten-
sor Gµν) to the distribution of energy-matter
within it (the energy-momentum tensor is Tµν))
evaluated in the FRWL metric, which is the met-
ric of the Universe. Therefore -considering c=1;
a(t): the scale factor of the Universe (that is
where all the time dependence of the metric goes
to, so it describes the Universe dynamics); k
equals to 1 in the case of a spherical metric, to
0 in the case of a flat Universe and to -1 if we
consider an hyperboloid metric- we have:

Gµν = 8πGTµν (1)

in

ds2 = −dt2+a2(t)

[
dr2

(1− kr2)
+r2(dθ2+sin2θdϕ2)

]
(2)

gives the two Friedmann equations:(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ (3)

ä

a
= −4πG

3
(ρ+ 3p) (4)

Now we observe that we can rewrite (3) by using
the definition of the critical density:

ρcrit ≡
3H2

8πG
(5)

where H(t) ≡ ȧ(t)
a(t)

is the Hubble parameter, and
H(t0) = 73.48 ± 1.65 kms−1Mpc−1 is the ex-
pansion rate of the Universe at the present time.
If we define the density parameter Ω ≡ ρ

ρcrit
and

ΩK ≡ − k
a2H2 then (3) becomes:

−ΩK = Ω− 1 (6)

Equation (6) relates topological proprieties of
the Universe to its energy density. We have that
if Ω > 1 then k = 1 and so we have a closed
Universe; if Ω = 1 then k = 0 and so we have
a flat Universe and if Ω < 1 then k = −1 and
it implies an open Universe. It is important to
notice the a-dependence of ρ (and so of Ω): con-
sidering the equation of state:

p = ωρ (7)
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and using the energy-momentum tensor conser-
vation law:

∂ρ

∂t
+ 3

ȧ

a
(ρ+ p) = 0 (8)

we can find:
ρ ∝ a−3(1+ω) (9)

Since for cold dark matter ω = 0 then ΩM ∝ a−3;
for the radiation ω = 1/3 and so ΩR ∝ a−4

and if we consider a fluid with ω = −1 then
Ω = const (this fluid is equivalent to a cosmo-
logical term -the Einstein equation in this case
is Gµν + Λgµν = 8πGTµν- which is just a con-
stant term in Friedmann equations). So if we
consider that the Universe is made with matter,
radiation, a cosmological term (so a fluid with
ω = −1) and has a curvature, we have that (6)
is the so called consistent relation:

ΩK + ΩΛ + ΩM + ΩR = 1 (10)

Since a ∝ t
2
3

1
1+ω and k ≃ 0, we have that

at the beginning the Universe was dominated
by radiation (ΩR > ΩM), then there was
a matter-dominated period (from the time at
which ΩR(teq) = ΩM(teq) and it turns out that
teq = 50.000 years) and after that from zΛ = 0.44
up to now the Universe is dominated by the cos-
mological term, that is the dark energy (zΛ is so
that ΩΛ = ΩM(zΛ) and the fact that zΛ is very
close to our present time it is quite strange be-
cause it means that acceleration has begun very
recently: this is the so called cosmic coincidence
problem). The flat ΛCDM model (which has
proven able to describe a wide variety of observa-
tions, from the low to the high redshift Universe)
considers the Universe as made up with two
dominants components: the Cold Dark Matter
(CDM) and the Cosmological Constant (Λ). In
this cosmological model, equation (10) is there-
fore:

ΩΛ + ΩM = 1 (11)

As we will see in next sections, equation (11) is
what is used by DES in order to further test the
ΛCDM model and try to constrain the dark en-
ergy density.
Now we want to work on the second Friedmann
equation, so equation number (4), and our aim
is to understand why there should be some-
thing missing in our acknowledge of the Uni-
verse, whether it is something wrong in Gen-
eral Relativity at cosmological scales or a new
kind of energy that dominates the Universe at
the present time -dark energy-. We note that
equation (4) relates the Universe acceleration to
its density (ρ) and pressure (p). We define the
deceleration parameter as:

q = − ä

aH2
= − äa

ȧ2
(12)

Therefore if q > 0 it means that the Universe
is decelerating, while if q < 0 the Universe is
accelerating. With this definition and using the
equation of state, equation (4) becomes:

q =
Ω

2
(1 + 3ω) (13)

What discriminates between an accelerating or
decelerating Universe is therefore ω (Ω > 0 by
definition). It turns out that the Universe is ac-
celerating if ω < −1

3
. But where is the point?

The point is that for Cold Dark Matter ω = 0
and so q = 1

2
Ω > 0 then we have deceleration

and for radiation ω = 1
3

then q = Ω > 0 and
so deceleration again. As a consequence if we
can measure experimentally q and we observe a
q < 0, this cannot be explained neither by a
matter-dominated Universe nor by a radiation-
dominated one: there should be something more
and unknown. Actually this is what happens.
Indeed through high redshift measurements it is
possible to have an experimental esteem of q and
it has been observed that q0 < 0, where q0 is the
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value of q at the present time. To be more pre-
cise, we can measure q by using Hubble law at
the second order (if we are at high redshift so
that we can appreciate also the term in z2):

H0dL = z +
1

2
(1− q0)z

2 (14)

where dL is the luminosity distance which is de-
fine as:

dL = a(t0)rS(1 + z) (15)

rs is the distance coordinate from the observer
to the source. Thus now we have the following
problem: experimentally q < 0 and the only way
to make it possible inside General Relativity is
that the Universe is dominated by a fluid with
an equation of state parameter ω < −1

3
, but:

• matter has ω = 0

• radiation has ω = 1
3

So what is going on here? And what could be
the possible solutions to this problem? There
are two different answers to these questions.

1. We have to modify General Relativity so
that it explains the acceleration: in this
case we assume that General Relativity
is incomplete at cosmological scales but,
since there are experimental proofs of this
theory, the correction should be very small.
One possibility is that we can modify the
action in the following way:

S =
1

16πG

∫
d4x

√
−gF (ϕ)R (16)

where ϕ is a scalar field and the difference
with the typical action is the F (ϕ) factor.
Another possibility is that we can intro-
duce a mass term for gravitons, that fence
gravity at large distances.

2. We assume that General Relativity works
also at cosmological scales and that there
is something beyond Standard Model. We
introduce a new kind of matter, in particu-
lar the most accredited solution is a scalar
field with ω < −1

3
. For instance if we have

the lagrangian

L =
1

2
∂µQ∂µQ+ V (Q) (17)

then energy-momentum tensor is

Tµν = ∂µϕ∂νϕ− gµν(
1

2
∂σϕ∂

σϕ+ V (ϕ))

(18)
and so if Q̇ << V (Q) then we have that

ω =
p

ρ
−→ −V (Q)

V (Q)
= −1 (19)

In this way we have obtained what we were
looking for: a new kind of matter (a scalar
field Q whose nature is unknown) that has
ω = −1, and can therefore be a perfect
candidate for the cosmological term and so
it could be what dominates the Universe at
the present time. The problem of the cos-
mological constant is that if we look at the
vacuum energy density associated to the
zero-point fluctuations of quantum fields
(that contributes to the cosmological con-
stant) we see that it is much larger than
the critical density of the Universe. This
is not in agreement with the fact that the
Universe can be considered flat (from ob-
servations it has been seen that the curva-
ture k is ≃ 0). Moreover it turns out also
that the vacuum energy density is much
greater than ρΛ and of course this is a big
problem too.

To summarize: observations have proven the
Universe acceleration which isn’t predicted in
our theories (General Relativity plus the fact the
Universe is composed by cold dark matter and
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radiation). This means that or General Relativ-
ity has to be modified (and in this case the cos-
mological model continues to include only cold
dark matter and radiation) or a new kind of mat-
ter with ω < −1

3
has to be introduced (its energy

density is what we call dark energy) and in the
ΛCDM model discussed before it is the cosmo-
logical term (it has ω = −1).

2 Dark Energy Survey Y1

The Dark Energy Survey is a six-year sur-
vey (August 2013-January 2019) that mapped
5000 deg2 of the southern sky in five broadband
filters (g,r,i,z,Y) using the 570 megapixel Dark
Energy Camera, located on the 4m Blanco tele-
scope at the Cerro TololoInter-American Obser-
vatory. The aim of the survey is to further test
the ΛCDM model -because despite its success
in low and high redshift observations, there is
the lack of a fundamental theory that can con-
nect the cold dark matter and the cosmological
constant with the rest of physics- as well as the
mechanism that drives the cosmic acceleration:
be it a cosmological constant, some form of dark
energy (so in general a fluid with ω < −1

3
and

not needs ω = −1), or a modification of Gen-
eral Relativity. In this work we focus on data
collected by DECam during the Year 1 (Y1) ob-
servational season, running from 31 August 2013
to 9 February 2014, which covers ∼ 1800 deg2

of the southern sky. The final DES Y1 foot-
print -we are talking about final because some
regions of the observed sky were excluded from
the analysis- is shown in Figure 1: the upper
panel is the Stripe 82 region (116 deg2) while
the lower one is the SPT region (1321 deg2).
The analysis of DES Y1 is done with galaxy clus-
ters, which are the largest objects bounded to-
gether by gravity in the Universe (1014 − 1015

solar masses) and are one of the key probes
of dark energy measurements. The photomet-
ric cluster finder used in DES Y1 is redMaPPer
(red-sequence Matched-filter Probabilistic Per-
colation cluster finder). This algorithm cre-
ates an optically-selected catalog by identifying
galaxy clusters as overdensities of red-sequence
galaxies. The goal of the survey is reached by
simultaneously constraining cosmology and the
observable-mass relation through cluster abun-
dances and weak lensing. We are talking about
observable-mass relation because it is not possi-
ble to directly estimate a cluster mass, but we
need a mass proxy. The mass proxy chosen in
DES Y1 is richness λ: it is the number of red
galaxies in a cluster; to be more precise it is the
sum of the membership probability of red galax-
ies in the cluster. Only red galaxies are consid-
ered in richness for three reasons: they have a
better photometric redshift (so it is possible to
be more sure that they are in the cluster); they
have been in a cluster for a longer period than
the blue galaxies and they are more massive than
blue galaxies.

Figure 1: DES Y1 footprint, which is composed
by two non-contiguous regions: the Stripe 82
region (116 deg2; upper panel) and the SPT re-
gion (1321 deg2; lower panel).
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Figure 2: Gravitational Lensing images.

After having the richness value, through
weak lensing it is possible to calibrate the
richness-mass relation and it turns out that it
is a convolution of a Poisson and a Gaussian
distribution. Gravitational lensing induces dis-
tortions in the images of back-ground source
galaxies (as we can see in Figure 2) and it is a
very powerful resource since it is sensible with-
out differences both to baryonic and dark matter
(galaxies and clusters are just seen as dark mat-
ter halos of differing masses) [see Appendix A
for dark matter problem]. In the limit of weak
gravitational lensing, the distorted images of the
source are characterized by the reduced shear g:

g ≡ γ

1− κ
(20)

where γ is the shear and κ is the convergence.
The gravity of a localized mass distribution, such
as a galaxy cluster, induces positive shear along

the tangential direction with respect to the cen-
ter of the overdensity. It is possible to find the
azimuthally averaged tangential shear γT (which
is the observable) at the projected radius R:

γT =
Σ(< R)− Σ(R)

Σcrit

≡ ∆Σ(R)

Σcrit

(21)

where Σ(R) is the line-of-sight surface mass den-
sity at R; Σ(< R) represents the surface mass
density within projected radius R and Σcrit is the
critical surface mass density, which character-
ize the geometry of the source-lens system that
modulates the amplitude of the induced shear
signal. The definition of Σcrit is:

Σcrit(zs, zl) =
c2

4πG

Ds

DlDls

(22)

where Dl, Ds and Dls are respectively the angu-
lar diameter distance to the lens, to the source
and between the lens and the source; while zs
and zl are the source and the lens redshift. The
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differential surface density is defined as:

Σ(< R) =
2

R2

∫ R

0

dR′ R′ Σ(R′) (23)

So we need to understand now what the surface
density is. Its definition is:

Σ(R) = ΩMρcrit

∫ ∞

−∞
dz ξhm(

√
R2 + z2) (24)

where ξhm is the halo-matter correlation func-
tion, which is the tendency to find matter near
halos. Correlation functions are what the ques-
tion now moves on. Cluster density profiles
are closely related to the halo-matter correlation
function:

ρ(r) = ΩMρcrit(1 + ξhm) (25)

This equation means that the average density of
halo at some distance r from the center of the
halo is proportional to the mean density of the
Universe and the halo-matter correlation func-
tion. The 3-d density profile that we use in this
work is the NFW profile, which has been found
through N-body simulations with the intent of
investigating the structure of dark halos in the
Standard Cold Dark Matter cosmology:

ρnfw(r) =
ΩMρcritδC

( r
rs
)(1 + r

rs
)2

(26)

where rs is the scale radius and δC is the normal-
ization. This ρnfw-predicted structure of galaxy
clusters is consistent both with X-ray observa-
tions of the intra-cluster medium and with the
presence of giant gravitationally lensed areas.
Then the corresponding correlation function is:

ξnfw(r) =
ρnfw(r)

ΩMρcrit
− 1 (27)

We notice that the NFW profile describes the
1-halo density of halos, that is the density of a

halo within its boundary. However, halos tend
to be found near other halos and for this reason
the average density of halos should also have a
2-halo term. As we move far from the center of
a halo the halo-matter correlation function be-
comes the 2-halo term:

ξhm(r >> rs) = ξ2−halo(r) (28)

Since halos are biased tracers of the matter den-
sity field, the two-halo correlation function is:

ξ2−halo(r,M) = b(M)ξmm(r) (29)

where b(M) is the bias (a function of mass) and
ξmm is the matter auto-correlation function (so
it describes the average density of matter). So
now, knowing that at small scales the correla-
tion function follows the 1-halo term while at
large scales it follows the 2-halo term, we can
understand what is the ξhm expression:

ξhm(r,M) = sum(ξ1−halo, ξ2−halo) (30)

Now we have understood all the terms that ap-
pear in equation (21), that is the expression of
the experimental weak lensing observable that
we have. Next goal is to understand how DES
Y1 data vector (Table 1 and Table 2) is con-
structed. The steps to follow in order to do that,
are:

• measure redshift through spectroscopy;

• measure richness;

• create a redshift and richness binning
scheme in order to achieve high signal-to-
noise measurements of the weak lensing
profile of galaxy clusters;

• count the number of galaxy clusters and
compute their masses in said bins.
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Table 1: Number of galaxy clusters in the DES Y1 redMaPPer catalog for each richness and redshift
bins. Each entry takes the form N(N)±∆N stat±∆N sys, where: the numbers between parenthesis
correspond to the number counts corrected for the miscentering bias factors; the first error bar cor-
responds to the statistical uncertainty in the number of galaxy clusters in that bin, while the second
error bar is the systematic error.

Table 2: Mean mass estimates for DES Y1 redMaPPer galaxy clusters in each richness and redshift
bins. The reported quantities are log10(M). The first error bar refers to the statistical error, while
the second one is the systematic uncertainty.

Table 3: Sources of systematics uncertainties
in the cluster mass calibration with the relative
amplitudes in DES Y1 analysis.

Talking about systematic uncertainties, we
have that the ones associated to cluster counts
are well understood: the covariance matrix of
cluster counts is due to Poisson noise, sample
variance and cluster miscentering. Sources of
systematic errors in the cluster mass calibration

are more difficult, since we have to deal with
many different effects. In Table 3 there is a list
of all those systematics uncertainties, and here
we are doing also an explanation of them:

• Shear multiplicative bias: there could be
an over- or under- estimation of gravita-
tional shear (mean tangential ellipticity of
lensed galaxies);

• Redshift systematic uncertainties;

• Modeling systematics: inaccuracies in the
halo-mass correlation function model;

• Cluster triaxiality: dark matter halos have
triaxial shapes and so if we have a clus-
ter sample which is dominated by clusters
with major axes aligned along the line-of-
sight, the lensing signal will be boosted rel-
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ative to the prediction based on spherically
symmetric halos;

• Line-of-sight projections: there could be
changes in the cluster lensing signal and
in richness due to matter and galaxies pro-
jected along the line-of-sight;

• Miscentering: redMaPPer doesn’t always
correctly center clusters.

In Figure 3 we can see the results of DES Y1.
The shaded areas are the observed cluster num-

ber counts (on the left) and mean cluster masses
(on the right), while the dots are the best-fit
model of the same quantities. They are plotted
as functions of richness for each of the three red-
shift bins. The bottom panel shows the residual
between the data and DES Y1 best-fit model.
Then in Table 4 we report the model param-
eters and the parameters constraints obtained
from the joint analysis of redMaPPer DES Y1
cluster abundance and weak-lensing mass esti-
mates (notice that the matter density obtained
is ΩM = 0.179+0.031

−0.038).

Figure 3: Observed (shaded areas) and best-fit model (dots) for the cluster number counts (left) and
the mean cluster masses (right) as a function of richness for each of the three redshift bins. The
bottom panel shows the residual between data and the best-fit model (points are slightly displaced
along the x axis to avoid overcrowding).
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Table 4: Model parameters and parameters constraints from the joint analysis of redMaPPer DES Y1
cluster abundance and weak-lensing mass estimates. In the third column there are the model priors
(N (µ, σ) stands for a Gaussian prior). The fourth column lists the modes of the 1-d marginalized
posterior along with the 1-σ errors. Parameters without a quoted value are those for which the
marginalized posterior distribution is the same as their prior.

The ΛCDM model considers the following
parameters: ΩΛ ≃ 0.7, ΩM ≃ 0.3 (while ΩB ≃
0.05, here ΩB is the baryonic matter density [see
Appendix A]) and ΩR ≃ ΩK ≃ 0. Thus we
have that the ΩM value obtained by DES Y1
(ΩM = 0.179+0.031

−0.038) is not compatible with the
ΛCDM model expected value (the same stands
for ΩΛ since we can use equation (11) assum-
ing flat ΛCDM cosmological model). Instead,
σ8 value obtained (σ8 = 0.85+0.04

−0.06) is comparable
with the one expected: σ8 is the rms value of
matter density fluctuations in a sphere of radius
8h−1Mpc (where h ≃ 0.75) with an expected
value of 0.81. Because of the low ΩM value, we
have a surprisingly low value for S8 = σ8(

ΩM

0.3
)0.5:

S8 = 0.65± 0.04. In Figure 4 there is a compar-
ison between DES Y1 posteriors on S8 and the
ones derived from a variety of different experi-
ments: the tension in S8 of DES Y1 posterior
relative to the other low-redshift probes is rang-
ing from 1.5σ to 2.5σ; if we compare it to Planck
CMB result then the tension in S8 reaches 4.0σ.

Figure 4: Comparison of the 68% (dark) and
95% (light) confidence level constraints on S8

derived from DES Y1 analysis (shaded gray
area) and other experiments from literature.
Red error bars are for cluster abundance analy-
ses, blue ones for weak lensing and galaxy clus-
tering analyses and purple for the CMB con-
straint.
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If we naively combine all the nine low-
redshift experiments assuming they are mutu-
ally independent, the DES Y1 cluster result has
2% probability of being a statistical fluctuation
around their mean.

Figure 5: Comparison of the 68% (dark) and
95% (light) confidence contours in the σ8 −ΩM

plane derived from DES Y1 cluster counts and
weak-lensing mass calibration (gray contours)
with other constraints from literature.

In Figure 5 there is a comparison between
the 68% and the 95% confidence regions in the
σ8 − ΩM plane derived from different experi-
ments. This figure makes clear that the S8 ten-
sion is due to the low value of ΩM obtained by
DES Y1. Because of the fact that all the other
cosmological probes have obtained significantly
higher values for ΩM , and also from the fact that
DES 3x2pt, that is based on the same data of
DES Y1 (but uses galaxies instead of clusters in
the analysis and uses three two-points correla-
tion functions: cosmic shear, galaxy clustering,

galaxy-galaxy lensing), obtains comparable cos-
mological constraints to the ones of all the other
probes, we can think that there could be the
presence of unexpected systematics or physics
in DES Y1 analysis. A possibility that has been
explored is whether these tensions could be re-
duced by considering a different cosmological
model. An analysis with ωCDM model (so con-
sidering the equation of state parameter of dark
energy ω ∈ [−2,−1

3
]) was done, and it turned

out that it doesn’t imply any improvement in
the agreement between DES clusters and the re-
maining data sets.

3 Selection Effect Bias

In order to try to understand if there are possible
unmodeled systematics in the data, we compare
the cluster masses or the number count of clus-
ters (so our data vector) with the same quan-
tities predicted with the respective complemen-
tary data set combined with DES 3x2pt priors:
Figure 6. The shaded areas are the observed
data vector (of number counts on the left and of
masses on the right), while dots are the predicted
quantities: on the left we have the predicted
number counts estimated using the combination
of the observed weak-lensing masses and DES
3x2pt cosmology, while on the right there are the
predicted masses obtained through the number
counts data and DES 3x2pt cosmological priors.
Focusing on the left part of the graph, we can
notice that if we assume that the recovered clus-
ter masses and 3x2pt cosmology are right, then
the redMaPPer catalog should be highly incom-
plete. In particular it should be ∼ 50% incom-
plete at low richness and between 10%−40% in-
complete at the highest richness bin. The point
is that such a large incompleteness, especially at
high richness, is unlikely: the redMaPPer cata-
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logs have been extensively vetted over the years
and for instance 100% of the SPT and Planck SZ
clusters within the DES Y1 footprint and below
redshift 0.65 are detected by redMaPPer. Since
DES 3x2pt cosmology is comparable with all the
other surveys, we can think the problem is on
the estimation of weak-lensing masses. The right
panels of Figure 6 compares the cluster masses
predicted by DES Y1 analysis to the ones esti-
mated through the observed cluster counts and

3x2pt cosmology. We see weak-lensing masses
are low relative to the predicted ones: the dif-
ference is ∼ 30−40% in the lowest richness bins
and ∼ 10% in the highest bins. We interpret
all these differences as due to DES Y1 masses
esteems: the analysis is limited by the accuracy
of cluster mass calibration. Therefore we focus
on the cluster’s excess surface density profile ∆Σ
(equation (21)) which is the cluster lensing ob-
servable (to be more precise it is γT ).

Figure 6: Comparison of the observed data vectors (shaded areas) with the number counts predicted
from the combination of weak-lensing mass estimates and DES Y1 3x2pt cosmology (left panel) and
mean masses predicted from the combination of Y1 number counts data and DES 3x2pt cosmology
(right panel). The lower panel shows the percent residual of the data vector to the prediction.
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Figure 7: Ratio between the signal from a richness-selected sample (observed) and the signal expected
from the halo mass probability distribution function (expected) for different richness-redshift bins.
For Σ at approximately 1 pMpc there is a peak and then the bias vanishes at large scales. The bias
for ∆Σ is non-vanishing at large scales because ∆Σ at each rp contains the information of Σ from
r < rp. The bias in ∆Σ can be as high as 20 to 60 % at large rp.

In Figure 7 there are plots of the ratio
∆Σobserved/∆Σexpected in richness-redshift bins,
and we can see that the profile it is not a straight
horizontal line at 1. We can attribute this dif-
ference to a selection bias: optically identified
galaxy clusters are prone to selection effects that
can bias the weak lensing mass calibration. The
selection effect induces correlation between the

weak lensing signal and cluster richness at a
given cluster halo mass. As a consequence the
lensing signal is biased compared with what we
would expect from the halo-mass probability dis-
tribution function. We can analytically model
the selection bias by assuming that lnλ and lnΣ
follow a bivariate Gaussian distribution. We
assume that this joint probability distribution
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function has a mean:

( ⟨lnλ|M⟩ , ⟨lnΣ|M⟩ ) (31)

and a covariance matrix:

C =

(
σ2
lnλ rσlnλσlnΣ

rσlnλσlnΣ σ2
lnΣ

)
(32)

where r is the correlation coefficient (so if there
is not correlation between Σ and λ then r = 0),
σlnΣ and σlnλ are the standard deviations of the
two observables at a given mass. Therefore the
conditional probability distribution of lnΣ given
lnλ corresponds to a Gaussian distribution with
the mean:

⟨lnΣ|lnλ,M⟩ = ⟨lnΣ|M⟩+ rσlnΣ
lnλ− ⟨lnλ|M⟩

σlnλ
(33)

The last term in equation (33) describes the se-
lection bias associated with cluster lensing (if
there is not correlation then r = 0 and so we
don’t have that term).
We want to include the selection effect in DES
Y1 analysis by doing a simultaneous likelihood
between cosmology, richness-mass relation and
the selection effect. So we want to empirically
design a functional form for the ∆Σ profile in
Figure 7 and to obtain that model parameters
values through the simultaneous likelihood at
each step of the Markov Chain Monte Carlo
(DES Y1 analysis is driven by MCMC chains).
The goal of this new analysis is to see whether
the final cosmological constraints will be the
same of the previous analysis (and so we will
still obtain ΩM ≃ 0.18) or if we will have a ΩM

value closer to the ones that are in literature.
Our model for the ∆Σobserved/∆Σexpected profile
shown in Figure 7 is:

∆Σobserved

∆Σexpected

= a ln2R + b lnR + c (34)

with

a = a0 +

(
λ

30

)αa

+

(
1 + z

1.3

)βa

(35)

b = b0 +

(
λ

30

)αb

+

(
1 + z

1.3

)βb

(36)

c = c0 +

(
λ

30

)αc

+

(
1 + z

1.3

)βc

(37)

In this way we only have 9 free parameters which
are shared across all richness-redshift bins.

4 CosmoSIS
If we want to understand how we can include
selection effect in the analysis, we need to un-
derstand how DES Y1 analysis works. Code is
run through CosmoSIS which connects together
samplers (which decide how to explore a cos-
mological parameter space) with pipelines made
from a sequence of modules (which calculate the
steps needed to get a likelihood function). In or-
der to include the selection bias in the analysis
we thus have to write new modules, which in-
clude the model in equation (34), and to modify
the likelihood. In Figure 8 there is a schematic
example of a CosmoSIS run.

Figure 8: Schematic example of a CosmoSIS
run.
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• The green sampler generates parameters
and sends them to the pipeline (which is
just a sequence of modules, so it tells which
modules and in which order have to be
run). At the end of the run it gets a total
likelihood back.

• The blue modules are independent codes
run in the numbered sequence (the pipeline
establishes the order). They each perform
one step in the calculation of the likeli-
hood. They are pieces of code in python,
C, C++ or Fortran and needs to have two
specially named functions in them: setup
and execute. The setup function is run
once at the beginning of the CosmoSIS
process and the execute function is run
at each step of the MCMC, so each time
there are new input parameters for which
the sampler wants the likelihood.

• The purple connections show that each
module reads inputs from the DataBlock
and then saves its results back to it.

• The yellow DataBlock acts like a big
lookup table for data: it stores the initial
parameters and then also the results from

each module. Modules communicate via
DataBlock.

• The blue Likelihood module computes a
final likelihood value

In the DES Y1 analysis there is a module called
deltasigma which computes Σ (the name of the
module is misleading). So to include the selec-
tion bias in the analysis, we:

1. Write a new module called finish which
computes ∆Σ starting from the Σ profile
obtained in deltasigma module;

2. Write a second module called parabola
where we multiply the ∆Σ profile obtained
in the finish module for the parabola in
equation (34);

3. Include these new modules in the pipeline;

4. Modify the Likelihood module so that we
have a simultaneous likelihood for cos-
mology, richness-mass relation and the
parabola model.

The final pipeline is shown in Figure 9.

Figure 9: Final pipeline, where there are also finish and parabola modules and where the Likelihood
module (SigmaMort Like) has been modify in order to compute a simultaneous likelihood for cosmol-
ogy, the observable-mass relation and the parabola parameters.
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In order to make the finish module as fast as
possible we have estimated the time needed to
compute ∆Σ starting from Σ in different ways
and using different toolkits, so that we can de-

cide the best way to write the new module. Be-
low there are the ∆Σ profiles obtained with the
relative toolkit, way of computing and time of
execution. In addition to all of them we have
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Figure 10: 1-halo (∆Σ1h), 2-halos (∆Σ2h) and total excess surface mass density profiles (∆Σtot) (which
are computed in different ways) with the relative time of execution. From the top to the bottom they
are computed: using cluster toolkit; using CLMM and a Simpson integration; using CLMM and the
Hankel function; using CLMM and some clmm functions; using CCL. We notice the first method (so
using cluster toolkit) is the fastest method to compute ∆Σ profiles among these ones.

also considered the possibility of computing
∆Σ by using the trapezoidal rule to calculate
the integral in equation (23). It turns out that
this last method is the best way to obtain the
excess surface density and so we have used it in
the finish module.
The next step is to run CosmoSIS with this new
pipeline and see which are the new cosmological
constraints obtained. If we will obtain ΩM ∼ 0.3
then we will have to try to find theoretical ex-
planations to the selection effect model, while if

ΩM still remains around 0.18, then we have to
think about other possible systematics or effects
to include in the analysis and also to consider
the possibility that there could be something in
cluster physics which is still not known.
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A Dark Matter Problem

From experiments we have that the matter den-
sity of the Universe is ΩM ≃ 0.3, while the bary-
onic one is ΩB ≃ 0.05: this is the so called dark
matter problem. There are experimental hints
for the existence of some new kind of matter

beyond Standard Model or some needed mod-
ification in our laws (for example: gravitational
lensing is observed even if we don’t have a lens
made with baryonic matter; the orbital veloci-
ties of stars don’t decrease if we go far from the
galaxy center but they reach a plateau). There
are different possible explanations to the dark
matter problem:

• Particles: there is a new kind of particle
that is not included in Standard Model
and which has an energy density equal
to 0.3 − 0.05. The classical solutions are
WIMP (weakly interactive massive par-
ticles): they are cold relics which de-
couple when they are not relativistic (so
the Boltzmann exponential in the Boltz-
mann equation is active) and that interact
weakly (the cross section is σ ∼ 10−38cm2).
It is demonstrated they could perfectly ex-
plain the 0.3 value of ΩM .

• MACHOS (massive astrophysical compact
objects): they are almost planetary ob-
jects (candidates of baryonic dark matter)
and have been searched through gravita-
tional lensing. It has been demonstrated
they cannot be a relevant portion of halos.

• Wave-like candidates: the classical ones
are axions. Axions are pseudoscalar par-
ticles which are introduced also as a reso-
lution to the strong CP problem.

• MOND (modified Newtonian dynamics):
it is a modification of the Newton law,
without any theoretical foundation. It
states that

F =

{
ma for a > a0

ma2

a0
for a < a0

(38)

with a0 ≃ 10−10ms−2. This theory
doesn’t explain the Bullet Clusters (two
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colliding clusters of galaxies) gravitational
potential: the spatial offset of the center of
the total mass from the center of the bary-
onic mass peaks cannot be explained with
MOND.
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