

IP feedback for SuperKEKB

Makoto Tobiyama KEK Accelerator Laboratory

Machine parameters for SuperKEKB

Machine Design Parameters

parameters		KEKB		SuperKEKB		unite
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7.007	GeV
Half crossing angle	φ	11		41.5		mrad
# of Bunches	Ν	1584		2500		
Horizontal emittance	ε _x	18	24	3.2	5.3	nm
Emittance ratio	к	0.88	0.66	0.27	0.24	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.30	mm
Beam currents	lb	1.64	1.19	3.6	2.6	А
beam-beam param.	ξ _y	0.129	0.090	0.0886	0.081	
Bunch Length	σz	6.0	6.0	6.0	5.0	mm
Horizontal Beam Size	σx*	150	150	10	11	um
Vertical Beam Size	σy*	0.94		0.048	0.062	um
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

SuperKEKB status update

Construction works

- Finished removing LER arc vacuum chambers.
- Finished removing LER arc bends.
- Almost finished removing LER wigglers.
- Removing Tsukuba straights will start on Apr..
- Arrived LER wiggler chambers
- Will arrive Damping ring magnets soon
- FY2011 construction budget has been approved.
- We will have groundbreaking ceremony on 8/Apr.

3. DismantlingLess crowded & much lighter tunnel
and much more crowded storage area.

Magnet type	# of Mag. removed from KEKB so far	Mag Weight (t)	Net Weight (t)	comments
LER B	107	~3	~320	~30 magnets will be reused at SuperKEKB. Looking for someone who can use them.
Steering	860	~0.4	~340	~60% of them will be reused with some modification. Looking for someone who can use them.
Wiggler	134	~3	~400	~20 still remains in the tunnel. All wigglers will be reused at SuperKEKB.
			>1000	Vacuum pipes (& the solenoid coils) are not included.

2011/02/08

SuperKEKB-MAC (2011)

4

	Integral field gradient (T/m)•m	Position from IP mm	Magnet type	Corrector	Leak field cancel coil
QC2RE	12.91	2925	S.C. + Iron Yoke	a1, b1, a2, b4	
QC2RP	10.92 [31.21T/m×0.350m]	1956	S.C.	a ₁ , b ₁ , a ₂ , b ₄	b3, b4, b5, b6
QC1RE	26.22 [79.03×0.360]	1410	S.C.	a ₁ , b ₁ , a ₂ , b ₄	b3, b4, b5, b6
QC1RP	22.43 [66.52×0.3372]	932	S.C.	a ₁ , b ₁ , a ₂ , b ₄	b3, b4, b5, b6
QC1LP	22.91 [67.94×0.3372]	-932	S.C.	a ₁ , b ₁ , a ₂ , b ₄	b ₃ , b ₄ , b ₅ , b ₆
QC1LE	26.03 [82.75×0.360]	-1410	S.C.	a ₁ , b ₁ , a ₂ , b ₄	$b_{3'} b_{4'} b_{5'} b_6$
QC2LP	10.96	-1930	S.C. + Iron Yoke	a ₁ , b ₁ , a ₂ , b ₄	
QC2LE	14.13	-2700	S.C. + Iron Yoke	a ₁ , b ₁ , a ₂ , b ₄	

2011/02/08

SuperKEKB-MAC (2011)

QC1P magnet design (QC1RP, QC1LP)

- Same cross section and longitudinal design for QC1RP and QC1LP
- 2 layer coils [double pancake]
- Designed SC cable
 - Cable size : 2.5 mm in height, and 0.93 mm in width
- SC correctors inside of the magnet bore
 - $-a_{\mathcal{Y}}b_{\mathcal{Y}}a_{\mathcal{Y}}b_{4}$ from the inside, single layer coil
- Cryostat inner bore radius=18.0 mm
- Beam pipe (warm tube)
 - inner radius=10.5 mm, outer radius=14.5 mm

2011/02/08

SuperKEKB-MAC (2011)

SC cancel coils against the leak field from QC1P

- b_5 , b_6 , b_4 , b_3 from the inside
- Cryostat inner bore radius=18.0 mm
- Beam pipe(warm tube)
 - inner radius=10.5 mm, outer radius=14.5 mm

Design of QC1E

- Beam pipe(warm tube)
 - inner radius=22.0 mm, outer radius=26.0 mm
- 4 layer coils [double pancake]
- Cryostat inner bore radius=25.0 mm
- Beam pipe (warm tube)
 - inner radius=17.0 mm, outer radius=21.0 mm
- G_R = 79.03 T/m at I_{op} =1242.1 A, I_{op}/I_c = 72.7 % G_L = 82.75 T/m at I_{op} =1300.6 A, I_{op}/I_c = 75.8 %

SuperKEKB-MAC (2011)

Cancel coils for the leak field of QC1P/E and QC2RP

- The leak field profiles along the opposite lines are calculated.
- The leak magnetic fields of the main quadrupoles on the opposite beams are designed to be canceled with the SC correctors of b₃, b₄, b₅ and b₆.
- B₁ and B₂ components in the leak field are not canceled, and they are included in the optics calculation.
 - B2 component is used for focusing and defocusing e-/e+ beams.

QC1RE leak field profile and cancellation along LER beam line No cancellation of dipole and quadrupole fields

Calculation by M. Iwasaki

最大入射率:

LER: 4 nC/bunch, 2 bunches/pulse, 25 Hz HER: 5 nC/bunch, 2 bunches/pulse, 25 Hz

最大入射率と釣り合うビーム寿命は LER >181 sec, HER > 105 sec

ビーム寿命要求値は >600 sec

K. Oide, Y. Ohnishi, A. Morita

漏れ磁場の影響を除く為に、QC1E/Pの対向ビームラインに磁 気シールドを付ける。

補償ソレノイド磁場

Tunability of Parameters

	SuperKEKB	Case I	Case II
Energy (GeV) (LER/HER)	4.0/7.0	4.0/7.0	4.0/7.0
β_{y}^{*} (mm)	0.27/0.30	0.27/0.347	0.26/0.30
β_{x}^{*} (mm)	32/25	32/25	40/25
ε _x (nm)	3.2/5.3	3.2/ <mark>4.6</mark>	3.2/ <mark>4.3</mark>
ϵ_y/ϵ_x (%)	0.27/0.24	0.28/0.25	0.48/0.41
σ _y (μm)	0.048/0.062	0.049/0.063	0.063/0.073
ξγ	0.09/0.081	0.087/0.09	0.09/.078
σ _z (mm)	6/5	6/5	6/5
I _{beam} (A)	3.6/2.6	3.6/2.6	3.6/2.6
N _{bunches}	2500	2500	2000
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	80	80	80

Machine parameters are tunable to some extent.

US-Japan collaboration

Since JFY2003

KEK, SLAC, FNAL, BNL, Cronell U., U. Hawaii, etc.

- Development of BxB feedback systems
- Study of E-cloud instability and its cure
- Development of X-ray beam size monitor
- Study of beam-beam interactions
- From JFY2011 we will start following programs with SLAC
 - Development of RF gun
 - Design study of the IR masking and shielding
 - Mechanical design of collimators
 - Accelerator physics
- About \$609k will be approved

KEKB BxB FB

IP orbit feedback for KEKB (iBump)

- Calculate beam-beam deflection (H and V) using position data from BPM outside QCS magnets.
 - Repetition~1Hz.
 - LER beam size feedback (Horizontal)
- Change the HER orbit with fast correctors
- Slow orbit corrector (CCC) corrects the residual orbit distortion keeping local bump by the iBump FB.

Difficulty of IP orbit control at SuperKEKB

SuperKEKB(Nano-Beam Scheme)

- Low emittance, low-beta
 - Low emittance -> Orbit drift relative to the IP beam size becomes large.
 - Low-beta -> No difficulty arises, since the orbit change at IP is also smaller.

But there is an exception. The beta functions at the IR quadrupoles become large.

-> Position oscillation of these quadurpoles becomes problem.

IP machine parameters

	КЕКВ		SuperKEKB		
	LER	HER	LER	HER	
ε _x	18nm	24nm	3.2	5.0	
ε _γ	0.15nm	0.15nm	8.6pm	13.5pm	~1/4
κ	0.83 %	0.62%	0.27%	0.25%	
β_x^*	120cm	120cm	32mm	25mm	
β _y *	5.9mm	5.9mm	0.27mm	0.31mm ~	1/4.5
σ_x^*	150µm	150µm	10µm	11µm	
σ _x '*	120µrad	120µrad	450µrad	320µrad	
σ _y *	0.94 μm	0.94µm	48nm	56nm -	-1/20
σ _y ΄*	0.16mrad	0.16mrad	0.18mrad	0.22mrad	
iBump horizontal offset		+/- 500µm		+/- 30µm?	
iBump vertical offset		+/- 150µm		+/- 7.5µm?	
iBump vertical angle		+/- 0.4mrad		+/- 0.4mrad?	

Measured oscillation (KEKB-HER)

KEKB BxB FB

Measured oscillation (KEKB-LER)

Mechanism of luminosity degradation due to orbit offsets at IP and their tolerance

- Mechanism of performance degradation
 - The luminosity degradation due to beam-beam blowup is much larger than geometrical loss.
 - In the horizontal direction, shift of the collision point from the waist point is problem.
- Tolerance
 - Verical offset: Luminosity loss ~ 2% with v-offset of $1/10\sigma_v$
 - Horizontal offset: Shift of CP from waist: < 1/10 β_y^* (~30µm) -> h-offset: < ~2.5µm

K. Ohmi

Vertical offset (new)

- tolerance ~0.5σ_i
- toleranceにたいして甘いパラメータ

 $1/10 \sigma_v^*$ (~5nm) -> Luminosity ~2% loss

 $1/10 \sigma_v$ * (~20 μ rad)-> Luminosity ~1.4% loss

Tolerance of collision condition ^{K. Ohmi} Horizontal collision offset and waist

- Horizontal offset and waist are related to each other.
- The cross point of the waist is only one in x-z plane for the crab waist scheme.

How fast and how largely does the orbit change?

Response amplitude (Vertical direction)

H. Yamaoka

Modal calculation

Latest simulation result (SuperKEKB)

How to detect orbit offset at IP

Orbit feedback at IP : Algorism

• Beam-beam deflection (SLC, KEKB vertical)

Sensitivity of detection of beam-beam kick

 Comparison between KEKB and SuperKEKB

$k = \frac{4\pi}{2} \varepsilon$	BPMs at SuperKEKB should		2	
$\beta_y^* \beta_y^* \beta_y$	have 4 times higher		КЕКВ	SuperKEKB
$\Delta y' = -\frac{k_y}{2} \Delta y$	sensitivity than KEKB.	β_{y}^{*}	5.9mm	0.27mm
2		ε _γ	0.15nm	8.6pm
$\Delta y = \frac{\sigma_y}{D} = \frac{\sqrt{\beta_y}\varepsilon_y}{D}$	·	$\sqrt{\varepsilon_{y}/\beta_{y}^{*}}$	1.59 x 10 ⁻⁴	1.78 x 10 ⁻⁴
D $D2\pi [\varepsilon]$		$\sqrt{eta_y^{BPM}eta_y^*}$	2.0m	0.5m

A,B,C,D: BPM ~2.4m fromIP

About horizontal orbit feedback

- Difficulty to develop based on the beam-beam defection like the vertical case
 - Small ξx
 - ξx ~ 0.0028(e+), 0.0017(e-)
 - Two sources of horizontal beam-beam kick
 - Horizontal offset and shift of collision timing
- Maybe we need a different method for the Hor. feedback.
 - Luminosity feedback (dithering)? (like PEP-II)
 - Beam size feedback (like KEKB Hor. feedback before crab)
- Effect of horizontal offset
 - Due to Hor. offset, the two beams collide at the position which is shifted from the waist point.
 - The crab waist seems to compensate this shift of waist.
 - However, actually the situation becomes worse with the crab waist, since we have to keep the both beams at the design collision point with this scheme.
- Feedback speed
 - Fast vibration of IR quads is tolerable. We do not need very fast feedback

BPM for IP orbit feedback

- Vertical positions of both beams are monitored for orbit feedback to maintain stable beam collision. For horizontal feedback, BPMs might not be used.
- Resolution:1 μ m (tentative)
- Repetition: 1 kHz (tentative)

KEKB BxB FB

Button electrodes for near IP BPM

Small button (rod) size:

- 1.8mm diameter
- Low loss, low *ɛ*r ceramics
- SMA-Reverse connector
- Estimated beam power using GdfidL:
 - Total passing power : ~11W
 - 508MHz power : ~6dBm

BPM between QC1 and QC2

- Pick-ups for BPM are screwed after the beam pipes are inserted into the cryostat using service ports.
- Leaf support
- Rooting of signal cables

- Down convert 508.8MHz component to IF of 16.9MHz with analog mixer (with level FB).
- Convert IF signal with 16 bit ADCs (99.4MHz=4950 frev).
- Digitally down convert to DC (I & Q ch) through CIC and FIR filters.

Digital signal processing

- micro-TCA form factor
- Virtex-5 FGPA with PPC is used.
- Embedded EPICS on PPC in the Virtex5 FPGA

Digital filter block

Frequency response

KEKB BxB FB

Latency

KEKB BxB FB H. Fukuma

Tracking simulation of orbit feedback system

- The transfer function which includes the PID controller has been implemented in the tracking.
- The effectiveness of the orbit feedback has been studied by this tracking.
 - Two cases
 - Case 1: QC1L, QC1R, QC2L, QC2R (HER) oscillation from KEKB measurement
 - Case 2: QC1L (HER) oscillation only from recent simulation
- The effect of BPM resolution has also been studied.

racking check with simple disturbance (single frequency)

Tracking (case 1)

QC1L, QC1R, QC2L, QC2R from KEKB measurement

QC1L, QC1R, QC2L, QC2R from KEKB measurement w/o FB

The 100 Hz fc(BPM) is not enough.

Tracking (case 2)

QC1L from simulation

w/ FB Rate= 1 kHz, Res.= 0 m x10⁻⁷ Beam size Vertical Position at IP [m] 1 kHz 0.4 0 0.2 0.6 0.8 ¹ x10⁵ Turns x10⁻⁷ Vertical Position at IP [m] 100 Hz 0.2 0.8 0.4 0.6 ¹ x10⁵ Turns

QC1L from simulation w/o FB

The orbit change can be effectively suppressed by the feedback with 100 Hz fc(BPM).

Effect of BPM resolution

Summary(1)

- Construction works from KEKB to SuperKEKB are in progress, on schedule.
- Design work, especially around IP are also in progress, going to much detailed considerations.
- Collaboration with SLAC and FNAL for the construction of SuperKEKB, especially around injector, will formally start under US-Japan collaboration on HEP.
- Funding situation:
 - Damping ring
 - Special budget for "Very Advanced Research Support Program"
 - Annual construction budget for FY2011 has been approved.

KEK Director General (Prof. A. Suzuki) said "The budget has been almost fully (>85%) funded "

Summary(2)

- The IP orbit control at SuperKEKB is much more difficult than that at KEKB.
- Major difficulty comes from the mechanical vibration of IR quadrupoles.
 - Simulation on the quads of SuperKEKB has given a better result than KEKB.
 - Further suppression of the vibration may be possible.
 - The coherence of vibration of the two rings may help.
- In parallel to the efforts to suppress the quadrupole vibration, we will develop the orbit feedback based on the beam-beam deflection.
- BPM requirement
 - Resolution: $1\mu m$ is enough. $5\mu m$ is tolerable?
 - Bandwidth: ~ 1kHz
- Horizontal orbit feedback
 - We need to develop a method other than the beam-beam deflection such as luminosity feedback or beam size feedback.

Summary(3)

- Prototype of IR special BPM system has been constructed and under testing.
 - Need the special fast connection form BPM detector to Bump calculator (and Magnet power supplies), such as Rapid-IO connection, will be needed.
- This system (with much cheaper analog front-end) might be used to stabilize orbit around local chromaticity correction area (medium-band BPM circuit, like Libera).