Towards a unified equation of state (not only!) for astrophysical simulations

Espresso Seminars

Laboratori Nazionali del Sud

Catania, 8th March, 2023

Author: S. Burrello

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

3 Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

Introduction: Equation of State of nuclear matter

- Equation of State (EoS) of nuclear matter (NM)
 - Extensive $\stackrel{eq.}{\longleftrightarrow}$ intensive variables $(E = E(\rho, \delta, T))$
- Essential ingredient for compact star modelization
 Mass-radius relation of neutron stars (199)
 General relativity idrostatic equilibrium
 General relativity idrostatic equilibrium

- Links with nuclear structure and reaction properties
 - Collective excitations, neutron skins, clustering,

Hadron

neutron star

Nuclei

Quarks and Gluons

Critical point 2

arvon Density

Introduction: Equation of State of nuclear matter

- Equation of State (EoS) of nuclear matter (NM)
 - Extensive $\stackrel{eq.}{\longleftrightarrow}$ intensive variables $(E = E(\rho, \delta, T))$
- Essential ingredient for **compact star** modelization
 - Mass-radius relation of neutron stars (NS)
 - \Rightarrow General relativity idrostatic equilibrium
 - Core-collapse supernovae, binary mergers, ...

Isospin degree of freedom

iquid-gas coexistence

perature

Supernovae Ila

$$\frac{dp}{dR} = -\frac{(\varepsilon + p)(M + 4\pi r^3 p)}{R(R - 2M)}$$
$$\frac{dM}{dR} = 4\pi R^2 \varepsilon,$$

Links with nuclear structure and reaction properties

Collective excitations, neutron skins, clustering,

Introduction: Equation of State of nuclear matter

- Equation of State (EoS) of nuclear matter (NM)
 - Extensive $\stackrel{eq.}{\longleftrightarrow}$ intensive variables $(E = E(\rho, \delta, T))$
- Essential ingredient for **compact star** modelization
 - Mass-radius relation of neutron stars (NS)
 - ⇒ General relativity idrostatic equilibrium
 - Core-collapse supernovae, binary mergers, ... •

$$\frac{dp}{dR} = -\frac{(\varepsilon + p)(M + 4\pi r^3 p)}{R(R - 2M)}$$

$$\frac{dM}{dR} = 4\pi R^2 \varepsilon,$$

dp

Introduction: Equation of State of nuclear matter

- Equation of State (EoS) of nuclear matter (NM)
 - Extensive $\stackrel{eq.}{\longleftrightarrow}$ intensive variables $(E = E(\rho, \delta, T))$
- Essential ingredient for **compact star** modelization
 - Mass-radius relation of neutron stars (NS)
 - ⇒ General relativity idrostatic equilibrium
 - Core-collapse supernovae, binary mergers, ...

TOV equation

$$\frac{dp}{dR} = -\frac{(\varepsilon + p)(M + 4\pi r^3 p)}{R(R - 2M)}$$
$$\frac{dM}{dR} = 4\pi R^2 \varepsilon,$$

• Collective excitations, neutron skins, clustering, ...

< ∃ >

Multi-messenger astronomy and EoS constraints

- Extracting information on $EoS \Rightarrow Multi-disciplinary$ approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in unexplored regimes • Compact stars probe interaction in unexplored regimes • Compact stars probe interactions of ms pulsar $M > 2M_{eff}$ (NICER coll.) [M C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)] • Mill 100, ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller et al., ApJL 918, L27 (2021)] • C. Miller

Multi-messenger astronomy and EoS constraints

- Extracting **information** on EoS \Rightarrow **Multi-disciplinary** approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in unexplored regimes
 - Bayesian estimations of ms pulsar $M > 2M_{\odot}$ (NICER col
- [M.C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)

- Heavy-ion collisions (HIC) @ $\frac{L}{4} \approx (50 500) \frac{|\text{MeV}|}{4}$ with

Multi-messenger astronomy and EoS constraints

- Extracting **information** on EoS \Rightarrow **Multi-disciplinary** approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in **unexplored** regimes
 - Bayesian estimations of ms pulsar $M > 2M_{\odot}$ (NICER coll.)
- $[\mathsf{M}.\mathsf{C}. \ \mathsf{Miller} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{887}, \ \mathsf{L24} \ (\mathsf{2019})], \ [\mathsf{T}.\mathsf{E}. \ \mathsf{Riley} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{918}, \ \mathsf{L27} \ (\mathsf{2021})]$
 - Idal deformability from gravitational waves (LIGO/VIRG)

[B.P. Abbott, PRL 121, 161101 (2018)], [R. Abbott et al., PRL 125, 101102 (2020)]

• Heavy-ion collisions (HIC) @ $\frac{L}{4} \approx (50 - 500) \frac{1000}{4}$ with

• δ -dependence (isovector component) of EoS $\left(\delta\equivrac{
ho_{e}ho_{p}}{
ho}
ight)$ \Rightarrow aromatic charge S(
ho)

Multi-messenger astronomy and EoS constraints

- Extracting **information** on EoS \Rightarrow **Multi-disciplinary** approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in **unexplored** regimes
 - Bayesian estimations of ms pulsar $M > 2M_{\odot}$ (NICER coll.)
- $\label{eq:main_state} [\mathsf{M}.\mathsf{C}. \ \mathsf{Miller} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{887}, \ \mathsf{L24} \ (\mathsf{2019})], \ [\mathsf{T}.\mathsf{E}. \ \mathsf{Riley} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{918}, \ \mathsf{L27} \ (\mathsf{2021})]$
 - Tidal deformability from gravitational waves (LIGO/VIRGO)
- [B.P. Abbott, PRL 121, 161101 (2018)], [R. Abbott et al., PRL 125, 101102 (2020)]

• Heavy-ion collisions (HIC) @ $\frac{L}{A} \approx (50 - 500) \frac{\text{MeV}}{A}$ with RI

 δ -dependence (isovector component) of EoS $\left(\delta\equivrac{
ho_{E}ho_{E}}{
ho}
ight)$ \Rightarrow symmetry energy S(
ho)

2.5

2.0

V18

N93

© 1.5 U W GW170817 W

Multi-messenger astronomy and EoS constraints

- Extracting **information** on EoS \Rightarrow **Multi-disciplinary** approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in unexplored regimes
 - Bayesian estimations of ms pulsar $M > 2M_{\odot}$ (NICER coll.)
- $[\mathsf{M}.\mathsf{C}. \ \mathsf{Miller} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{887}, \ \mathsf{L24} \ (\mathsf{2019})], \ [\mathsf{T}.\mathsf{E}. \ \mathsf{Riley} \ \mathsf{et} \ \mathsf{al.}, \ \mathsf{ApJL} \ \mathsf{918}, \ \mathsf{L27} \ (\mathsf{2021})]$
 - Tidal deformability from gravitational waves (LIGO/VIRGO)

[B.P. Abbott, PRL 121, 161101 (2018)], [R. Abbott et al., PRL 125, 101102 (2020)]

- Heavy-ion collisions (HIC) @ $\frac{E}{A} \approx (50 500) \frac{\text{MeV}}{A}$ with RIB
 - δ -dependence (isovector component) of EoS $\left(\delta \equiv \frac{\rho_n \rho_p}{\rho}\right)$ \Rightarrow symmetry energy $S(\rho)$

$$\frac{E}{A}(\rho,\delta)\approx\frac{E}{A}(\rho,\delta=0)+\mathsf{S}(\rho)\delta^2$$

NLWN

11 12

13 14

ICER

2.5

2.0

3W170817

V18

Multi-messenger astronomy and EoS constraints

- Extracting **information** on EoS \Rightarrow **Multi-disciplinary** approach
 - Theory + astrophysical observations + nuclear experiments
- Compact stars probe interaction in **unexplored** regimes
 - Bayesian estimations of ms pulsar $M > 2M_{\odot}$ (NICER coll.)
- [M.C. Miller et al., ApJL 887, L24 (2019)], [T.E. Riley et al., ApJL 918, L27 (2021)]
 - Tidal deformability from gravitational waves (LIGO/VIRGO)

[B.P. Abbott, PRL 121, 161101 (2018)], [R. Abbott et al., PRL 125, 101102 (2020)]

- Heavy-ion collisions (HIC) @ $\frac{E}{A} \approx (50 500) \frac{\text{MeV}}{A}$ with RIB
 - δ -dependence (isovector component) of EoS $\left(\delta \equiv \frac{\rho_n \rho_p}{\rho}\right)$ \Rightarrow symmetry energy $S(\rho)$ far from saturation ρ_0

$$\frac{E}{A}(\rho,\delta) \approx \frac{E}{A}(\rho,\delta=0) + S(\rho)\delta^2$$
$$S(\rho) = J + L\left(\frac{\rho-\rho_0}{3\rho_0}\right) + \dots$$

13

Stefano Burrello

Towards a unified EoS for astrophysical simulations

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

O Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functional theory: nuclear structure and reactions

Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

- A 3 b

Theoretical models for EoS and finite nuclei

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 - \Rightarrow Diagrammatic hierarchy (power counting)

Theoretical models for EoS and finite nuclei

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 - \Rightarrow Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data

• Energy Density Functional (EDF) theory

Theoretical models for EoS and finite nuclei

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 ⇒ Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data
- Energy Density Functional (EDF) theory

$$E = \langle \Psi | \hat{\mathcal{H}}_{eff}(
ho) | \Psi
angle = \int \mathcal{E}(\mathbf{r}) d\mathbf{r} \xrightarrow[eq.]{eq.} \mathsf{EoS}$$

 $|\Psi
angle \equiv$ independent A-particle state

Theoretical models for EoS and finite nuclei

- Ab-initio approaches based on many-body expansion
 - Realistic or effective field theory (EFT) interactions
 ⇒ Diagrammatic hierarchy (power counting)

- Phenomenological models with effective interaction
 - Self-consistent mean-field (MF) approximation
 - Fit of parameters to reproduce various data
- Energy Density Functional (EDF) theory

$$E = \langle \Psi | \, \hat{\mathcal{H}}_{\mathsf{eff}}(
ho) \, | \Psi
angle = \int \mathcal{E}(\mathsf{r}) d\mathsf{r} \xrightarrow[\mathsf{eq.}]{} \mathsf{EoS}$$

 $|\Psi
angle \equiv$ independent A-particle state

 \Rightarrow Description of HI ground state and excitations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nuclear structure: symmetry energy and slope

- Structure of **neutron-rich** nuclei
- [S. Burrello et al., PRC C99(5), 054314 (2019)]
 - Neutron skin thickness $\Delta r_{np} \Leftrightarrow L$

8 Tsime-Dependent (Contrative) ex (T2Pible)

Nuclear structure: symmetry energy and slope

- Structure of neutron-rich nuclei
- [S. Burrello et al., PRC C99(5), 054314 (2019)]
 - Neutron skin thickness $\Delta r_{np} \Leftrightarrow L$

Tsime: Dependent (Hanters E) ek (TaPible) Pygmy Dipole Resonance (HDR)

Nuclear structure: symmetry energy and slope

- Structure of neutron-rich nuclei [S. Burrello et al., PRC C99(5), 054314 (2019)]
- Neutron skin thickness $\Delta r_{np} \Leftrightarrow L$

- Time-Dependent-Hartree-Fock **(TDHF)** $i\hbar\dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{\mathcal{H}}_{eff}[\rho]\right] = 0$
- Isovector dipole (collective) excitations:
 - Pygmy Dipole Resonance (PDR)

Nuclear structure: symmetry energy and slope

- Structure of **neutron-rich** nuclei [S. Burrello et al., PRC C99(5), 054314 (2019)]
- Neutron skin thickness $\Delta r_{np} \Leftrightarrow L$

- Time-Dependent-Hartree-Fock **(TDHF)** $i\hbar\dot{\rho}(t) + \left[\hat{\rho}, \hat{\mathcal{H}}_{eff}[\rho]\right] = 0$
- Isovector dipole (collective) excitations:
 - Pygmy Dipole Resonance (PDR)

Stefano Burrello

Towards a unified EoS for astrophysical simulations

Nuclear structure: symmetry energy and slope

- Structure of **neutron-rich** nuclei [S. Burrello et al., PRC C99(5), 054314 (2019)]
- Neutron skin thickness $\Delta r_{np} \Leftrightarrow L$

- Time-Dependent-Hartree-Fock **(TDHF)** $i\hbar\dot{\rho}(t) + \left[\hat{\rho}, \hat{\mathcal{H}}_{eff}[\rho]\right] = 0$
- Isovector dipole (collective) excitations:
 - Pygmy Dipole Resonance (PDR)

Stefano Burrello

Towards a unified EoS for astrophysical simulations

HIC: surface and momentum dependence

• Pre-equilibrium in charge-asymmetric reactions

[H. Zheng, S. Burrello, M. Colonna, V. Baran, PLB 769 (2017)]

Interplay between fusion and quasi-fission processes
 ⇒ formation of super-heavy elements

H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, PRC 98 (2018)]

• Same framework as for nuclear structure \Rightarrow Merging with reaction studies

- Role of different terms of effective interaction (and EoS) on final outcomes
- Importance of momentum dependent: + - - terms (+ symmetry energy)
- HI are a reliable tool to extract information of EoS!

< 一型

< E

HIC: surface and momentum dependence

• Pre-equilibrium in charge-asymmetric reactions

[H. Zheng, S. Burrello, M. Colonna, V. Baran, PLB 769 (2017)]

- Interplay between fusion and quasi-fission processes
 ⇒ formation of super-heavy elements
- [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, PRC 98 (2018)]

• Same framework as for nuclear structure \Rightarrow Merging with reaction studies

- Role of different terms of effective interaction (and EoS) on final outcomes
- Importance of momentum dependent + surface terms (+ symmetry energy)
- HI are a reliable tool to extract information of EoS!

HIC: surface and momentum dependence

• Pre-equilibrium in charge-asymmetric reactions

[H. Zheng, S. Burrello, M. Colonna, V. Baran, PLB 769 (2017)]

- Interplay between fusion and quasi-fission processes
 ⇒ formation of super-heavy elements
- [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, PRC 98 (2018)]

- Same framework as for nuclear structure ⇒ Merging with reaction studies
- Role of different terms of effective interaction (and EoS) on final outcomes
- Importance of momentum dependent + surface terms (+ symmetry energy)
- HI are a reliable tool to extract information of EoS!

HIC: surface and momentum dependence

[H. Zheng, S. Burrello, M. Colonna, V. Baran, PLB 769 (2017)]

- Interplay between fusion and quasi-fission processes
 ⇒ formation of super-heavy elements
- [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, PRC 98 (2018)]

- Same framework as for nuclear structure \Rightarrow Merging with reaction studies
- Role of different terms of effective interaction (and EoS) on final outcomes
 - Importance of momentum dependent + surface terms (+ symmetry energy)
- HI are a reliable tool to extract information of EoS!

Image: A matrix

- ∢ ⊒ →

HIC: surface and momentum dependence

[H. Zheng, S. Burrello, M. Colonna, V. Baran, PLB 769 (2017)]

- Interplay between fusion and quasi-fission processes
 ⇒ formation of super-heavy elements
- [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, PRC 98 (2018)]

- ∢ ⊒ →

- Same framework as for nuclear structure \Rightarrow Merging with reaction studies
- Role of different terms of effective interaction (and EoS) on final outcomes
 - Importance of **momentum** dependent + surface terms (+ symmetry energy)
- HI are a reliable tool to extract information of EoS!

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

< (目) → (目)

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

8 Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

- 4 同 6 4 日 6 4 日

• Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas

• Lee-Yang expansion in $(a_s k_F)$ from EFT $(\nu_i = 2, 4 \text{ for PNM, SNM})$

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left[\frac{3}{5} + (\nu_i - 1) \frac{2}{3\pi} (k_F a_s) + (\nu_i - 1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_F a_s)^2 + \dots \right]$$

Application to nuclei \Rightarrow surface effects [S. Burrello et al., PRC 103(6), 064317 (2021)]

Implementation in **dynamical** models (work in progress!)

Finite-T calculations ⇒ impact on NS modelization ("pasta"-phase formation)
 [S. Burrello & M. Grasso, EPJA 58(2), 22 (2022)]

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang expansion in (a_sk_F) from EFT $(\nu_i = 2, 4 \text{ for PNM, SNM})$

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left[\frac{3}{5} + (\nu_i - 1) \frac{2}{3\pi} (k_F a_s) + (\nu_i - 1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_F a_s)^2 + \dots \right]$$

- New class of EDFs inspired by EFT
 - Application to nuclei \Rightarrow surface effects [S. Burrello et al., PRC 103(6), 064317 (2021)]
 - Implementation in dynamical models (work in progress!)

Finite-T calculations ⇒ impact on NS modelization ("pasta"-phase formation)
 [S. Burrello & M. Grasso, EPJA 58(2), 22 (2022)]

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang expansion in (a_sk_F) from EFT $(\nu_i = 2, 4 \text{ for PNM, SNM})$

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left[\frac{3}{5} + (\nu_i - 1) \frac{2}{3\pi} (k_F a_s) + (\nu_i - 1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_F a_s)^2 + \dots \right]$$

- **Application** to nuclei \Rightarrow **surface** effects [S. Burrello et al., PRC 103(6), 064317 (2021)]
- Implementation in dynamical models (work in progress!)

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang expansion in (a_sk_F) from EFT $(\nu_i = 2, 4$ for PNM, SNM)

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left[\frac{3}{5} + (\nu_i - 1) \frac{2}{3\pi} (k_F a_s) + (\nu_i - 1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_F a_s)^2 + \dots \right]$$

Finite-T calculations ⇒ impact on NS modelization ("pasta"-phase formation)
 [S. Burrello & M. Grasso, EPJA 58(2), 22 (2022)]

- Dilute PNM ($a_s = -18.9 \text{ fm}$) \Rightarrow close to unitary limit of interacting Fermi gas
- Lee-Yang expansion in (a_sk_F) from EFT $(\nu_i = 2, 4$ for PNM, SNM)

$$\frac{E}{N} = \frac{\hbar^2 k_F^2}{2m} \left[\frac{3}{5} + (\nu_i - 1) \frac{2}{3\pi} (k_F a_s) + (\nu_i - 1) \frac{4}{35\pi^2} (11 - 2\ln 2) (k_F a_s)^2 + \dots \right]$$

 Finite-T calculations ⇒ impact on NS modelization ("pasta"-phase formation) [S. Burrello & M. Grasso, EPJA 58(2), 22 (2022)]

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

8 Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

- 4 同 6 4 日 6 4 日

Beyond MF: towards a power counting in EDF

- Beyond MF ⇒ correlations explicitly taken into account (double-counting)
 - $\bullet~$ Hierarchy of interaction (and EoS) contributions $\Rightarrow~$ power counting in EDF
- EoSs at next-to-leading order (NLO) for symmetric NM (SNM) and PNM

- Renormalizability analysis
 ⇒ perturbative scheme
- Next-to-NLO (in progress):
 - Expansion parameter
 - Breakdown scale

[S. Burrello, C.J. Yang, M. Grasso, PLB 811, 13593 (2020)]

- 4 同 ト 4 目 ト 4 目 ト

• BMF study of closed-shell nuclei [C.J. Yang et al., PRC 106 (1), L011305 (2022)]

Equation of State of nuclear matter Towards a unified EoS: recent developments in EDF theory Connection with ab-initio: dilute regime of neutron matter Beyond MF: many-body correlations and clustering

Pairing correlations and nuclear superfluidity

• **Pairing** effects on mechanical (spinodal) instability in low-density nuclear matter ⇒ variation on compressibility and isotopic content of the clusterized matter

[S. Burrello, M. Colonna, F. Matera, PRC 89 (2014)]

- Homogenous stellar matter: impact of superfluidity on ν-scattering ⇒ cooling process in proto-NS (PNS) or pre-bounce of supernova explosions
 - [S. Burrello, M. Colonna, F. Matera, PRC 94 (2016)]

Clustering phenomena and neutron star crust

- Many-body (short-range) correlations (SRCs) below ρ_0
 - Formation of **bound** state of nucleons (clustering)
- Phenomenological models with clusters
 - Offute matter as a mixture of nucleons and nucleons.
 Nucleon statistical equilibrium (NRS) model

 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
 - Unified description of NS crust-core transition
 - [S. Burrello et al., PRC 92, 055804 (2015)]

< 同 > < 三 >

Clustering phenomena and neutron star crust

- Many-body (short-range) correlations (SRCs) below ρ_0
 - Formation of **bound** state of nucleons (clustering)
- Phenomenological models with clusters
 - Dilute matter as a mixture of nucleons and nuclei
 ⇒ Nuclear statistical equilibrium (NSE) model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
 - Unified description of NS crust-core transition

[S. Burrello et al., PRC 92, 055804 (2015)]

Clustering phenomena and neutron star crust

- Many-body (short-range) correlations (SRCs) below ρ_0
 - Formation of **bound** state of nucleons (clustering)
- Phenomenological models with clusters
 - Dilute matter as a mixture of nucleons and nuclei
 ⇒ Nuclear statistical equilibrium (NSE) model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
 - Unified description of NS crust-core transition
 - [S. Burrello et al., PRC 92, 055804 (2015)]

Clustering phenomena and neutron star crust

- Many-body (short-range) correlations (SRCs) below ρ_0
 - Formation of **bound** state of nucleons (clustering)
- Phenomenological models with clusters
 - Dilute matter as a mixture of nucleons and nuclei
 ⇒ Nuclear statistical equilibrium (NSE) model
 - [A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
 - Unified description of NS crust-core transition
 - \Rightarrow Composition and heat capacity of NS inner crust

[S. Burrello et al., PRC 92, 055804 (2015)]

Towards a unified EoS for astrophysical simulations

Short-range correlations and EoS at high density

- Nucleon knock-out in inelastic electron scattering [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - Smearing of Fermi surface (high-k tail at T=0)
 - SRCs from tensor components or repulsive core
- Quasi-deuterons to embed SRCs in relativistic MF
 [S. Burrello & S. Typel, EPJA 58, 120 (2022)]

 \Rightarrow improving description of EoS at high density

Short-range correlations and EoS at high density

- Nucleon knock-out in inelastic electron scattering
 [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - **Smearing** of Fermi surface (high-k tail at T=0)
- SRCs from tensor components or repulsive core
- Quasi-deuterons to embed SRCs in relativistic MF [S. Burrello & S. Typel, EPJA 58, 120 (2022)]

 \Rightarrow improving description of EoS at high density

Short-range correlations and EoS at high density

- Nucleon knock-out in inelastic electron scattering
 [O. Hen et al. (CLAS coll.), Science 346, 614 (2014)]
 - **Smearing** of Fermi surface (high-k tail at T=0)
 - SRCs from tensor components or repulsive core
- Quasi-deuterons to embed SRCs in relativistic MF
 [S. Burrello & S. Typel, EPJA 58, 120 (2022)]
 - ⇒ improving description of EoS at high density

< E

Outline of the presentation

Introduction

- Equation of State of nuclear matter: general concepts
- Role in astrophysical simulations and nuclear studies
- Source of information and recent constraints

2 Theoretical models

- Mean-field approximation and phenomenological approaches
- Energy density functionals: nuclear structure and reactions

Recent developments and results

- Connection with ab-initio: improving description at low-density
- Beyond mean-field: many-body correlations and clustering phenomena

Summary and conclusions

- 4 同 6 4 日 6 4 日

Equation of State of nuclear matter Towards a unified EoS: recent developments in EDF theory Connection with ab-initio: dilute regime of neutron matter Beyond MF: many-body correlations and clustering

Final remarks and conclusions

Main topic

- EoS of nuclear matter: importance for nuclear and astrophysical processes
- Theoretical modelization in light of recent multi-messenger constraints

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Final remarks and conclusions

Main topic

- EoS of nuclear matter: importance for nuclear and astrophysical processes
- Theoretical modelization in light of recent multi-messenger constraints

Main results

- Description of nuclear structure and reaction properties within EDF theory
- Inclusion of pairing, short-range correlations and cluster degrees of freedom
- Neutron star crust modelization and transport properties (cooling process)
- Connection between EDF and underlying microscopic ab-initio theories

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Final remarks and conclusions

Main topic

- EoS of nuclear matter: importance for nuclear and astrophysical processes
- Theoretical modelization in light of recent multi-messenger constraints

Main results

- Description of nuclear structure and reaction properties within EDF theory
- Inclusion of **pairing**, short-range **correlations** and **cluster** degrees of freedom
- Neutron star crust modelization and transport properties (cooling process)
- Connection between EDF and underlying microscopic ab-initio theories

Further developments and outlooks

- Stringent constraints from spectral pion ratio and Einstein telescope
- Unified EoS for nuclear structure, reactions and astrophysical simulations

イロト イボト イヨト イヨト

-

Final remarks and conclusions

Main topic

- EoS of nuclear matter: importance for nuclear and astrophysical processes
- Theoretical modelization in light of recent multi-messenger constraints

Main results

- Description of nuclear structure and reaction properties within EDF theory
- Inclusion of **pairing**, short-range **correlations** and **cluster** degrees of freedom
- Neutron star crust modelization and transport properties (cooling process)
- Connection between EDF and underlying microscopic ab-initio theories

Further developments and outlooks

- Stringent constraints from spectral pion ratio and Einstein telescope
- Unified EoS for nuclear structure, reactions and astrophysical simulations

THANK YOU FOR YOUR ATTENTION!

Stefano Burrello

Towards a unified EoS for astrophysical simulations

Equation of State of nuclear matter Towards a unified EoS: recent developments in EDF theory Connection with ab-initio: dilute regime of neutron matter Beyond MF: many-body correlations and clustering

Best wishes to all women!

Towards a unified EoS for astrophysical simulations