

CALICE Scintillator ECAL beam test @ DESY

Daniel Jeans, Kobe University for the CALICE collaboration

CALOR08 @ Pavia

Introduction

Scintillator ECAL module

Beam test @ DESY

Detector calibration

Detector response to EM showers

Future plans

strip scintillator calorimeter for an ILC detector

sampling calorimeter active material: scintillator absorber: Tungsten

designed for PFA: fine segmentation scintillator strips ~1x4 cm² orthogonal layers

each strip read out by MPPC photon counting device from Hamamatsu Photonics

built and tested small prototype first test of scintillator + MPPC calorimeter check suitability for ILC ECAL

exposed to 1-6 GeV e+ beam at DESY 03/07

Detector setup, scintillator types

MPPC: good photon detection, compact size, reasonable price

3 types of scintillator strips: Kuraray (Megastrip)

- WLSF readout
- direct readout (simpler)

KNU/Korea (separate strips)

- extruded scintillator (inexpensive)
- co-extruded TiO₂ covering

- WLSF readout

~12 p.e. per MIP

CALICE readout electronics and DAQ (from LAL-Orsay, DESY, UK groups) same as used by CALICE Analogue-HCAL group produced 3 half-modules (13 layers each) with different scintillator types

tested 3 configurations Kuraray (fibre) + Kuraray (direct) Kuraray (direct) + Kuraray (fibre) Extruded (fibre) + Kuraray (fibre)

compare performance of configurations

detector calibration

200

0

400

600

Strip being 2000 **1st configuration** Number of Events 1000 500 calibrated Layer-26 Strip-5 0 200 400 600 ADC counts **Trigger only Red strips have** combined layer25 strip14 seltrksec2 layer25 strip14 seltrksec2 non-pedestal signal Entries 5897 180 177.5 Mean **Blue strips have** 160 RMS 108.5 140 χ^2 / ndf 220.9 / 134 only pedestal signal 120 Prob 3.35e-06 100 21.49 ± 0.93 Width MP 113 ± 1.2 80 2.636e+04 ± 368 Area 60 40 GSigma 44.38 ± 2.22 20 fit to Gaussian-convoluted Landau 0¹

800

1000

e+ beam, no W plates

MIP response temperature dependence

MIP response uniformity: detailed scan across single strip

Projected along strip length

extruded strips show significant non-uniformity

fibre-MPPC matching found to be bad in some extruded strips mixture of fibre & direct light

checked in dedicated beamtest @ KEK improved extruded scintillator

area

MPPC (sensitive

now in production

scintillator
> 1mm
WLS fibre

light cross-talk between adjacent strips

CALICE ScECAL preliminary alisation fiber r/o megastrip selected strip selected strip E0.12 transverse neighbour (1) transverse neighbour 1 1.0 80.0 80.0 transverse neighbour (2 transverse neighbour 2 look at signal eighbou ongitud longitudinal neighbour 0.06 when MIP hits others other 0.04 adjacent strips 0.02 -900 100 200 500 600 700 300 ADC counts above pedestal

runs with tungsten plates

range of e+ beam momentum: 1->6 GeV/c

longitudinal shower profiles

quite smooth, a couple of smallish discontinuities reason still under investigation

Energy resolution of 3 configurations

resolution of configurations similar in quarter regions

at centre of detector, extruded+fibre much worse: effects of strip uniformity enhanced in this region

Measured energy resolution

	quarter regions		central region	
	stoch. term(%)	const term(%)	stoch. term(%)	const term(%)
fibre+direct:	13.98 ± 0.07	1.96 ± 0.12	13.39 ± 0.05	2.57 ± 0.07
direct+fibre:	13.83 ± 0.07	2.58 ± 0.09	13.70 ± 0.06	3.39 ± 0.05
extruded+fibre	: 14.61 ± 0.08	2.35 ± 0.12	14.52 ± 0.09	7.26 ± 0.05
			Non-uniformity	
Snower leakage gives significant contribution to constant term			gives large constant term in central region	

future plans

now constructing ~4x larger detector with improved extruded scintillator strips 30 layers, 18x18 cm² -> less energy leakage

CALICE beamtest at FNAL – September '08 run together with Scintillator+SiPM HCAL

test with different particle, wider energy range hadrons, muons, $\pi^0 \rightarrow \gamma \gamma$

Conclusions

Analysis of DESY testbeam data in good shape

In uniform regions, detector works well sufficient energy resolution for ILC ECAL $(\sigma/E \sim 14\%/\sqrt{E} \oplus 2\%)$

Non-uniformity of extruded strips significantly degrades performance improved samples have since been tested

In progress...

Further data analysis: MPPC saturation correction, shower shapes Detailed simulation Preparations for next beam test

Backups

Energy resolution in different detector regions (fibre+direct, with absorber)

Tracking detector alignment

determine drift velocity and relative positions of 4 drift chambers each chamber measures x,y position

Energy response uniformity, direct+fibre, 3 GeV

extruded+fibre @ 3 GeV: energy response vs. position

2-3 times more variation that direct+fibre configuration

extruded strips are less uniform