

Simulation of the 4th concept calorimeter

XIII International Conference on Calorimetry in High Energy Physics

Vito Di Benedetto

INFN Lecce and Università del Salento

27 May 2008, Pavia

Outline

- •The 4th Concept
- •ILCroot Offline Framework
- Hadronic Calorimeter geometry
- Calibration studies
- •Conclusion

The 4th Concept detector

- •VXD (SiD Vertex)
- •DCH (Clu Cou)
- •ECAL (BGO Dual Readout)
- •HCAL (Fiber Dual Readout)
- •MUDET (Dual Solenoid, Iron Free)

Subject of this talk

ILCRoot: summary of features

- CERN architecture (based on Alice's Aliroot)
- Full support provided by Brun, Carminati, Ferrari, et al.
- Uses ROOT as infrastructure

All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)

Extremely large community of users/developers

- Six MDC have proven robustness, reliability and portability
- Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!

The 4th Concept HCAL

- Cu + scintillating fibers
 + Čerenkov fibers
- ~1.4° tower aperture angle
- ~ 10 $\lambda_{_{int}}\,depth$
- Fully projective geometry
- Azimuth coverage down to ~2.8°
- Barrel: 16384 towers
- Endcaps: 7450 towers

Hadronic Calorimeter Towers

MonteCarlo

- ROOT provides the Virtual MonteCarlo (VMC) interface
- VMC allows to use several MonteCarlo (Geant3, Geant4, Fluka)
- The user can select at run time the MonteCarlo to perform the simulations without changing any line of the code

The results presented here have been simulated using Fluka

Calibration

The energy of HCAL is calibrated in 2 steps: Calibrate with single 45 GeV e raw E, and Es Calibrate with single 45 GeV $\pi^ \eta_{c}$ and η_{c} $\eta_C = \left(\frac{e}{h}\right)_C \qquad \eta_S = \left(\frac{e}{h}\right)_S$

First step calibration

Cer #pe/GeV = 44.9

Cer #pe/GeV = 43.8

Beam of 45 GeV e⁻

Scint #pe/GeV = 1074.2

core

Scint #pe/GeV = 1118.9

45 GeV e⁻ shower

in the hadronic calorimeter

Top view of the shower of a 45 GeV e⁻

boundary

Calorimeter response for 45 GeV e⁻

core

Digits_s

28

92.53

92.71

0.742

0.7576

Entries

Mean x

Scint digits

45 GeV π^- shower

in the hadronic calorimeter

Calorimeter response for 45 GeV π^-

Second step calibration

 π^- @ 45 GeV

$$R(f_{em}) = f_{em} + \frac{1}{\eta} (1 - f_{em})$$

 $R = \frac{E_{RAW}}{E}$ f_{em} = em fraction of the hadronic shower

 η = em fraction in the fibers

hadronic energy:

$$E_{\text{Beam}} = \frac{\eta_{s} E_{s}(\eta_{c} - 1) - \eta_{c} E_{c}(\eta_{s} - 1)}{\eta_{c} - \eta_{s}}$$

$$\lambda = \frac{1 - 1/\eta_s}{1 - 1/\eta_c} \qquad E_{Beam} = \frac{E_s - \lambda E_c}{1 - \lambda}$$

From the calibration fit

 $η_c = 6.876$ $η_s = 1.449$ λ = 0.362

Once calibrated this is the response of the calorimeter

$$\begin{split} E_{HCAL} &= \frac{\eta_{S} E_{S}(\eta_{C} - 1) - \eta_{C} E_{C}(\eta_{S} - 1)}{\eta_{C} - \eta_{S}} \\ \lambda &= \frac{1 - 1/\eta_{S}}{1 - 1/\eta_{C}} \qquad E_{HCAL} = \frac{E_{S} - \lambda E_{C}}{1 - \lambda} \end{split}$$

Time history of the Cer pe

Distribution of the Cer pe

Beam of 45 GeV π^-

Time history of the Scint pe

Distribution of the Scint pe

Beam of 45 GeV $\pi^{\scriptscriptstyle -}$

Distribution of the neutron fraction signal

Beam of 45 GeV $\pi^{\scriptscriptstyle -}$

Cer pe versus Neutron fractionl

From DREAM data: Cer Signal versus Neutron fraction

Beam of 45 GeV π^-

Birks recombination effect

Conclusion

•Improvement of the geometry in order to get uniform response

•Further study to better understand the neutron effect

45 GeV π^- shower development (th on secondaries 100MeV)

45 GeV π^- shower development (th on secondaries 35MeV)

45 GeV π^- shower development

