

Start from physics @ILC,CLIC, Not from a technology ...

e+e- interaction 0.09 – 1.0 TeV The main interesting processes (out of possible SUSY)		
Multi bosons	Multifermions + Boson(s)	
ZH	e⁺e⁻ H ,e+e− Z	
WW	νν Η , νν Ζ	
ZZ	ttH	
ZHH	e v W	
ZZZ	νν WW , νν ΖΖ	
ZWW	ttbar in bbar WW	
Etc but also the taus o	decays reconstruction for SUSY, CP… etc	

Start from physics @ILC,CLIC, Not from a technology ...

e+e- interaction 0.09 – 1.0 TeV

The main interesting processes (out of possible SUSY)

	Multi bosons ZH	Multifermions + Boson(s) e⁺e⁻ H,e+e− Z
Need Boson Tagging	WW ZZ ZHH ZZZ ZWW	vv H , vv Z ttH e v W vv WW, vv ZZ ttbar in bbar WW

Etc ... but also the taus decays reconstruction for SUSY, CP... etc

Best use of the luminosity ... use the decays in jets

Is it possible at ILC,CLIC ?

Pavia CALOR08 – J.-C.Brient (LLR CNRS/Ecole polytechnique)

Jet energy range of interest

The « Particle Flow Algorithm » - PFA

 $E_{jet} =$

fraction

 $E_{charged tracks} + E_{\gamma} + E_{h^0}$

9%

In our detectors, the charged tracks are better measured than photon(s) which are themselves better measured than neutral hadron(s)

 $\Delta p/p \sim qq \ 10^{-5}$

 $\Delta E/E \sim 12\%$

 $\Delta E/E \sim 45\%$

Resolution on the charged track(s) Resolution on the photon(s) Resolution on the h°

The « Particle Flow Algorithm » - PFA

 $E_{jet} =$

fraction

 $E_{charged tracks} + E_{\gamma} + E_{h^0}$

9%

In our detectors, the charged tracks are better measured than photon(s) which are themselves better measured than neutral hadron(s)

 $\Delta p/p \sim qq \ 10^{-5}$

 $\Delta E/E \sim 12\%$

 $\Delta E/E \sim 45\%$

Resolution on the charged track(s) Resolution on the photon(s) Resolution on the h°

PFA is **NOT** Energy Flow !!

The goal : Reconstruct all particles in the event

PFA is well suited to have the best resolution on jets, and it is true as long as it is uncorrelated with particle species,...... Shower separation based ONLY on topology !!

This is NOT Energy flow, where balance of energy with tracker momentum is made to extract neutral from shower with charged hadrons

Is it possible ?

Is it possible ?

on e⁺e⁻ interaction : WW , ZZ production

on e+e- interaction : T^{\pm} as a polarisation analyser

on e+e- interaction : T^{\pm} as a polarisation analyser

on e+e- interaction : T^{\pm} as a polarisation analyser

PFA feasibility uncertainties

How the PFA performances depend on the hadronic shower model?

M.Thomson (Cambridge Univ.)

	(PandoraPFAv02 +trackCheater)		E _{JET}	σ _E /E = <mark>α</mark> /√E _{jj} cosθ <0.7
\rightarrow	LDC00Sc	QGSP_BERT	45 GeV	22.6 %
\rightarrow	LDC00Sc	LHEP	45 GeV	23.2 %
	LDC00Sc	QGSP_BERT	100 GeV	29.3 %
	LDC00Sc	LHEP	100 GeV	30.2 %

It is not an answer but a first indication

••••

Built prototypes with the technology useable for PFA detector and goes to test beam to constraint the hadronic shower models

<u>(However, do not hope to have one single hadronic shower list working nicely for</u> <u>everything</u>)

• • • •

CALICE test beam with pion from very low energy 1GeV up to 100 GeV

cf talk by E.Garutti

Calorimeters optimised for PFA \rightarrow

CAlorimeters for the LInear Collider Experiment

Calorimeters optimised for PFA \rightarrow

CAlorimeters for the **LI**near **C**ollider **E**xperiment

Granularity (lateral)	→ Separate particles			
Segmentation (in depth)	→ pattern of the shower (no shower confusion)			
Large distance from IP	\rightarrow Open the jets			
Large B field	$ ightarrow$ The bending separate h° , γ from h [±]			
ECAL and HCAL inside the coil				

a) Very high granularity device i.e. 120 Mchannels for an ECAL (cells 5x5mm²)
b) Very compact calorimeter (to avoid large coil Cost) i.e. ECAL is 18 cm thick
c) Prototype in test beam is the only way to debug the concept and design

a)

→ Embedded VFE,FE,ADC)

Local zero supress, Low power dissipation

- → VERY good S/B at low S (mip)
- → STRICT control of the common mode !!
- → VERY STABLE response with time, temp., etc...

(or way to control the calibration)

→ A DAQ system able to manage this very high number of channels
 b)

→ very high density of channels (about 256 channels in 8 cm3)

c)

→ Test beam at DESY, CERN and now Fermilab

cf talk by Ch. De la Taille

cf talk by A.Lucaci-Timoce

cf talk by V.Bartsch

cf talk by F. Salvatore

2006 – 2007 CERN Test Beam with electrons, pions

TB for ECAL solution 1, Analysis of the electron test beam are close to the publication

MC/ real data at 2%

cf talk by D.Boumediene

Dense & Complex but It is a fantastic tool

- 30 readout layers in 20 cm
- 9720 channels in 18x18x20 cm3
- S/N at mip at about 8

NEXT (>2008) the hadrons response

FNAL 8 GeV pion beam

First study indicate that

- 1- software compensation would be feasible
- 2- Neutrons measurement could be done with time information vs E

Hardware compensation is not the only way to have compensation

Pion Test Beam MTBF-Fermilab

ECAL (solution 1) HCAL (solution 2) & a Tail Catcher Muon Tagger

Low energy pions beam

.

It will have strong impact On GEANT4 hadronic shower In near future

Detector optimised for PFA

The calorimeter is the central part and the reconstruction software is essential

The pattern recognition in the calorimeter is the core of the PFA performances

The cost and complexity of the calorimeter is largely dominant

<u>Cost fraction</u> 1/3 for the coil 1/3 for the calorimeter 1/3 for the rest

Ready for LOI expected at mid 2009

It is however important to notice that these R&D for PFA calorimeter are **strongly generic**

From electronics to PFA, from CFI mechanics to DAQ new generation

- optimising for PFA give a new view on the calorimeters ... the duty list is different
- The optimisation goes through software Not so easy one need to disentangle what is for proposed device and the part related to the software
- The calorimeter is more than ever the central part of the detector
- The proposed solution are ultra high granularity device as well as for ECAL than for HCAL
- The CALICE collaboration propose to design, built and test prototypes
 & results begin to arrive

10 years after the proposal to use PFA for ILC I am happy to see that LHC, TeVatron,... use or are expected to use it