

New crystal technologies for novel calorimeter concepts

Paul Lecoq CERN, Geneva

CALOR08 Pavia 26-30 May, 2008

1

- A Global (integral) approach for jet calorimetry cannot do better than $60-70\%/\sqrt{E}$
- Whatever the technical approach, high resolution for jets $(30\%/\sqrt{E})$ requires high granularity analysis of jet showers and/or a precise determination of the different components (electromagnetic, charged hadronic, neutral)

How can heavy scintillating crystals contribute?

Scintillating crystals for homogeneous calorimeters

Since Crystal Ball (NaI:Tl) at SPEAR known to give excellent electromagnetic energy resolution at low energy

Precise spectroscopy of charmonium states

Scintillating crystals for homogeneous calorimeters

Since L3, Babar, CMS (testbeam),... systematics can be controlled to give excellent energy resolution at high energy (0.5%)

Scintillating crystals for homogeneous calorimeters

Considered however to have poor performance for hadronic calorimetry

- Homogeneous calorimeters are intrinsically non compensating
- In addition quenching effects limit scintillation efficiency in high ionization density regions
- e/h >> 1
- e/π decreases with energy (as f_{em} increases) inducing non linearities

$$e/\pi = \frac{e/h}{1 - f_{em}(1 - e/h)}$$

A different detector concept

- PFA provides an attractive approach for a 3D imaging calorimeter
 - Integration issues with huge number of channels
- Dual readout is appealing for f_{em} determination
 - DREAM approach: sampling fluctuations
 - Bulk scintillator approach: coupling between scintillation and Cerenkov light

- Can scintillators provide a solution
 - Combining the merits of PFA and Dual Readout
 - Minimizing their relative drawbacks

May 2008

- New technologies in the production of heavy scintillators open interesting perspectives in:
 - Design flexibility: detector granularity
 - Functionality: extract more information than simple energy deposit
- The underlying concept of this proposal is based on metamaterials
 - Scintillating cables made of heavy scintillating fibers of different composition ⇒ quasi-homogeneous calorimeter
 - Fiber arrangement in such a way as to obtain 3D imaging capability
 - Fiber composition to access the different components of the shower

May 2008

May 2008

CALOR08 Pavia 26-30 May, 2008

P. Lecoq CERN

11

Concept of meta-cable

- Select a non-intrinsic scintillating material (unlike BGO or PWO) with high bandgap for low UV absorption
- The undoped host will behave as an efficient Cerenkov: heavy material, high refraction index n, high UV transmission
- Cerium or Praesodinum doped host will act as an efficient and fast scintillator
 - ≈ 40 ns decay for Ce
 - ≈ 20 ns decay for Pr
- If needed fibers from neutron sensitive materials can be added:
 - Li Tetraborate: $Li_2B_4O_6$
 - LiCaF: LiCaAlF₆
 - elpasolite family (Li or B halide of Rb, Sc and rare earth)
- All fibers can be twisted in a cable behaving as a pseudo-homogeneous active absorber with good position and energy resolution and particle identification capability
- Readout on both sides by SiPMT's

May 2008

Lutetium Aluminum Garnet LuAG (Lu₃Al₅O₁₂)

Physico-chemical properties

Structure / Space group	Cubic / Ia3d
Density (g/cm ³)) 6.73
Zeff) 62.9
Radiation length X_0 (cm)) 1.41
Interaction length (cm)	23.3 LuAP: 19.8 Fe: 17
Hardness (Mohs)	7.5 PWO: 3 BGO, glass: 5
Fracture toughness (Mpa.m ^{1/2})	1.1
Cleavage plane / H ₂ O solubility	No / No
Melting point (°C)	2260
Thermal expansion @ RT (°K-1)	8.8 10-6
Thermal conductivity @ RT (W/m°K)	31

Optical properties

Different Cerenkov materials

Material	Density (g/cm ³)	Radiation length X ₀ (cm)	Refractio n index n	Critical angle	Fondamental absorption (nm)	Cerenkov threshold e energy (KeV)	Relative photon yield*
SF6	5.2	1.69	1.81	56°	360	102	100
Quartz	2.2	12.7	1.46	47°	190	190	250
PbF ₂	7.66	0.95	1.82	57°	250	101	210
PbWO ₄	8.28	0.89	2.2	63°	370	63	104
LSO 🕐	7.4	1.14	1.82	57°	190	101	329
LuAG 🙄	6.73	1.41	1.84	57°	177	97	369
LuAP	8.34	1.1	1.95	59°	146	84	501

* For $\beta = 1$ particles. But lower β Cerenkov threshold for high n materials should further improve the photon yield in showers

May 2008

Conclusions

- This approach is based on the DREAM concept
- Added value: quasi-homogeneous calorimeter
 - scintillating and Cerenkov fibres of the same heavy material allowing to suppress sampling fluctuations
- Additional neutron sensitive fibers can be incorporated
- Very flexible fiber arrangement for any lateral or longitudinal segmentation: for instance twisted fibers in "mono-crystalline cables"
- em part only coupled to a "standard" DREAM HCAL or full calorimeter with this technology? Simulations needed

May 2008