

A 3D imaging calorimeter for AMS

Resolution,Linearity,X0 With Test Beam Data

Corinne Goy on behalf of the Ecal Group LAPP/IN2P3/CNRS/UdS

Physics of AMS on ISS

Aims Of ECAL

- Energy measurement :
 - GeV to TeV
 - e+/e-/γ
- e/h separation (+ tracker) :
 10³ 10⁴
- Stand Alone γ trigger
- γ identification

The Flight Model equipped with FE electronics

ECAL Structure

65 * 65 * 18 cm (sensitive volume)

Lead +Scintillating **Fibers** 18.5 mm 3 super layers

28/05/2008

ECAL Readout

Anodes \rightarrow Energy Dynode \rightarrow Trigger

- Granularity:
 - 324 PMts / 1296 anodes
 - 18 points long. (18 layers)
 - 72 cells (0.5 R_M)
- Dynamics :
 - MIP to TeV
 - 2 gains
- -30°C/ + 50°C

28/05/2008

Test Beam Setup (2006-07)

Slow Control : Temperature

A Signal dependence per channel <0.1% /C can be eventually taken into account.

Slow Control : Pedestals

0.44 ADC counts/ degrees

Only 3 Channels (High/Low) with a pedestal at 0 at a temperature of -20 °C.

Equalization

- 100 GeV hadron beam
- MIP signal in each cell
- Landau ⊗ Gauss

Scan along X et Y with a 100 GeV proton beam centered in the middle of the calorimeter.

Equalization

Equalization

Attenuation

- Can be measured on central cells :
 - Mip : all layers
 - Electrons : central layers
 - 10 and 30 GeV

- Hypothesis
 - attenuation identical for all cells
 - combined fit

$$f \times exp(-x/\lambda_{fast}) + (1-f) \times exp(-x/\lambda_{slow})$$

Attenuation With Electrons & MIP

Attenuation Correction

Impact Correction

The energy measurement is sensitive to the impact point given here by the barycenter

Method

- Adapted from a method used by the L3 experiment.
- Compute S1/S3 :
 - S1 : signal of the cell with
 - maximum signal
 - S3 : signal over [cell+1;cell-1]

S1/S3 sentivity

S1/S3 ratio has a better sensitivity to the barycenter than the total energy.

Impact Correction

After Impact Correction

Rear Leakage Correction

- Benefit from the longitudinal segmentation :
 - Approximation of the energy leakage by a triangle
- Erec : Energy after equalization + attenuation + impact corrections
- F : Fraction of energy in the last 2 layers
 - Erec/Ebeam = A + Slope * F

Energy Dependence

Leakage Correction

Off Center - 30 GeV

All Corrections Included

Resolution

Linearity

Preliminary Results

15° Incidence Angle

Preliminary Results

Stability/Homogeneity

Longitudinal Profile

28/05/2008

X 0

Calorimeter : ~16.9 X0

Preliminary Results

X0 : 15° Incidence Angle

Conclusion

- Flight Model of the calorimeter tested in Test Beam :
 - No Dead or Noisy channels observed (FE ready since 2004)
- Resolution :

$$\frac{\sigma}{E} = \frac{10.2\%}{\sqrt{E}} \oplus 1.6\%$$

- Same Results with an alternative method (different impact and leakage corrections)
- Possible Improvements (Equalizations, Temperature, Fit, ...)
 - Constant Term of 1.4 % achievable
- Linearity within 2% in the range [6-250] GeV
- ~17 Radiation Lengths
- Angular Resolution (not presented here)
 - 100 GeV e- : $\Delta \Theta$ = 11 mrad

Conclusion

AMS currently being integrated at CERN ECAL fixed at the bottom

- 1. PMt Response Equalization:
 - Individual Gain correction
 - Individual correction applied per cell
- 2. Signal Attenuation Correction:
 - Global correction applied per cell
- 3. Impact Correction:
 - Global factor applied per event
- 4. Rear Leakage Correction:
 - Global factor applied per event

Variation / Temperature

0.5 ADC counts/Degree Pedestal ~ 150 ADC Channels

Attenuation Correction

Attenuation Systematics

Energy Dependence

The other parameters are fairly independent of energy
Computed with high statistics 30 GeV electrons and apply to all energies

After Impact Correction

Average Correction as a function of the Barycenter for a normal incidence Energy measurement Before and After Impact correction

Effects on the resolution

Resolution Function

A better description of the energy distribution is given by a "Cristal Ball Function " (Gaussian + Exponential)

Resolution with 2mm of Lead

Angular Resolution

