Performance and Operation of the CsI(Tl) Crystal Calorimeter of the BaBar Detector

Calor 08 **30.May.2008** Pavia, Italy

Andy Ruland The University of Texas at Austin On behalf of the BaBar EMC group

The PEP-II B-Factory at SLAC

- Asymmetric e⁺e⁻ collider
 - 9 GeV e⁻, 3.1 GeV e⁺ \Rightarrow 10.58 GeV CM energy
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - Peak Luminosity: $12 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (April 2008)
 - Data taking period ended in April 2008
 - Total Luminosity recorded: 531.4 fb⁻¹

The BaBar Detector

- BaBar physics program: mainly *B* physics, also τ and charm physics, and rare decay searches with high luminosity
 - Calorimeter main goal is the reconstruction of:
 - Electrons
 - . J/ψ meson reconstruction for $\sin(2\beta)$: $B^0 \rightarrow J/\psi K_s (J/\psi \rightarrow e^+e^-)$
 - For *B* flavor tagging
 - **Photons** from π^0/η and radiative decays

•

Calorimeter Design

- 6580 CsI(Tl) Crystals
- **Barrel:** 48 θ rings
 - 120 crystals/ring
- Endcap: 8 θ rings
 - 80/100/120 per ring
- 90% coverage in CM frame
- 14 mrad non–projectivity in θ
 - Fully covers Barrel/Endcap gap

Barrel:

- 280 Carbon Fiber modules
 - 7 along θ / 40 along ϕ
 - 21 crystals / module
 - 7 crystals in θ / 3 crystals in ϕ

Endcap:

- 20 Carbon Fiber modules
 - 8 crystals in θ / 4,5,6 in ϕ
- 300 µm thick Carbon Fiber tube walls to hold crystals

CsI(Tl) Crystals

- 0.1% Thallium doping
- Trapezoidal shape
- Length:
 - 16.0 X_0 (bwd) and 17.5 X_0 (fwd)
- Tyvek wrapping for reflection ($2x \ 165 \mu m$)
- Al foil and Mylar wrapping for electrical isolation
- 2 PIN Si photodiodes (2x1 cm²)
 - Epoxied to 2x2 cm² polystyrene plate at crystal rear
- 2 preamps in readout box above crystal

NIM article

The *BABAR* Detector, B. Aubert *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **479**, 1(2002)

Readout Electronics

Data Readout Chain

Calorimeter Performance

Energy Resolution:

$$\frac{\sigma_E}{E} = \frac{\sigma_1}{\sqrt[4]{E}} \oplus \sigma_2$$

- $\sigma_1 = (2.30 \pm 0.03 \pm 0.3)\%$
- $\sigma_2 = (1.35 \pm 0.08 \pm 0.2)\%$

π^0 and η Response

Calibrations

Electronics Calibrations

- Linearize response of on-detector electronics by charge injection to preamp inputs
 - Determines pedestals and overall gain
 - Corrects for cross talk between crystals
- Performed during beam down times and after hardware replacement:
 - $\sim 2/\text{month}$ and requires $\sim 1\text{hr}$. with no beam.
- Single crystal calibrations
 - Light yields and crystal uniformities change through radiation damage
 - Radioactive Source \Rightarrow Low energy crystal response
 - Bhabha \Rightarrow High energy crystal response
 - Lightpulser checks readout path
- Cluster energy calibrations
 - Relate $E_{cluster}$ to energy of incident e^{\pm}/γ
 - Deposited E depends on leakage that is a function of (θ, ϕ) and the detector material
 - $\pi^0 \rightarrow \gamma \gamma \Rightarrow 70 \text{ MeV} \le E_{\gamma} \le 2 \text{ GeV}$
 - $e^+e^- \rightarrow \mu^+ \, \mu^- \gamma \Rightarrow 400 \ \text{MeV} < E_{\gamma} < 6 \ \text{GeV}$
 - See Jörg Marks' talk for details on the cluster calibrations

Bhabha Calibration

- Deposited cluster energy is constrained to equal prediction of GEANT based MC
- Solve linear equations so that c_i minimizes:

$$\chi^{2} = \sum_{k} \frac{(\sum_{i} (c_{i} E_{i}^{k}) - E_{dep}^{k})^{2}}{(\sigma^{k})^{2}} \qquad \begin{cases} c_{i} - \text{calibration} \\ E_{i}^{k} - \text{raw end} \\ E_{dep}^{k} - \text{depose} \\ \sigma^{k} - \text{error} \end{cases}$$

i – crystal index, *k* – cluster index c_i – calibration constant E_i^k – raw energy in crystal *i* E_{dep}^k – deposited cluster energy from MC σ^k – error

Radioactive Source Calibration

- Radioactive source used to set the low energy response for each crystal
 - n irradiated Fluorinert circulates through piping at front face of crystals
 - 6.13 MeV photon from ¹⁹F+n \rightarrow ¹⁶N+ α , ¹⁶N \rightarrow β +¹⁶O^{*} \rightarrow ¹⁶O + γ
 - ¹⁶N: $\tau_{1/2} \sim 7s$
- 15–30 minute runs taken every 4 ± 1 weeks with no beam in machine
- Resolution of constants: 0.33 %
- 2 failed generators over 10 year data taking period 2003, 2007 (red arrows)

Lightpulser Monitoring

- Daily lightpulser calibrations cover complete readout path from diodes to DAQ system
 - Time required for calibration: ~few minutes
- Xe lamp spectrum matched to emission freq. of CsI(Tl) scintillation
 - Allows monitoring of relative change in crystal response between calibrations
 - Also for diagnostics on electronics read out

Radiation Monitoring

- Radiation induced optical losses produce non uniform change in light yield along crystal length which degrade energy resolution.
- 116 p-channel MOSFET transistors arranged at the front face of crystals
 - Barrel: 56 / Endcap: 60 RadFETs
- Map integrated dose absorbed by different regions of calorimeter.
 - Scattered beam particles interactions with residual gas in vacuum chamber
 - $E \sim few MeV$
 - Radiative Bhabhas

Hardware Monitoring

- Hardware status is monitored in real time using EPICS
- Monitoring takes place for 100's of parameters
 - Temperature of electronics and crystals
 - I/V of electronics power supplies
 - Temperature and flow rates of chillers
- Readings archived in database
- All alarms are immediately passed to shifters and EMC on-call manager
 - Depending on severity, problems can be remedied within minutes

Environmental Monitoring

- Temperature regulation for integrity of crystal \leftrightarrow diode glue joints and LY of crystals. (~20±1° C)
- Electronics and Crystal Cooling maintained by 2 sets of chillers
 - 3 independent Fluorinert chillers: 1 barrel, 1 endcap, and 1 spare that can be switched on to either barrel/endcap circuit or both
 - Deionized Water chiller for barrel on-detector electronics
 - Backup chiller system (BCS) can replace both water and Flourinert chillers in emergencies

Data Monitoring-1

- Live Data Monitoring
 - During data taking checks made ~ 15 min.
 - Checks are made on occupancies, energy-time structure, energy/multiplicity profiles between live data and reference plots.
 - Automated comparisons made between previous runs
 - 3 permanently dead crystals and typically 0–24 temporarily dead channels

Data Monitoring-2

- Event reconstruction monitoring
 - Done offline and run by run
 - Typical runs 45–55 minutes in length (Each blue dot represents a single run)
 - Above data from Nov 2005 through Aug. 2006
 - E/p of Bhabha's, π^0 mass and width, occupancy multiplicities
 - Daily checks

Operational Activities

- For the last several years the EMC has been in a stable operation and maintenance mode
 - Result of first years hard work and automation of monitoring
- Typical maintenance activities:
 - <u>On detector electronics</u> (access required for repair)
 - ADB board (12 crystals) or IOB board (72 crystals) replacement
 - Typically 1–2 boards replaced per access, with more problems after down times
 - Requires Detector access (\sim 4+ hrs) so planned with PEP down time.
 - Can mask channels out of data taking if no access can be made (~ 5 min)
 - Several water leaks from cooling lines which caused electronics damage
 - Off detector electronics (no access required)
 - Power supplies occasionally trip, cause data taking to stop
 - Power cycling, reseating, swapping with spares are normal (few minutes)
 - Other Hardware
 - Chiller maintenance (~weekly)
- 1 major intervention
 - BaBar installed upgrade to muon system in Fall 2006 which required uncabling and removal of most of the front end calorimeter electronics for a period of 3 months.
 - 280 electronics boards remove/changed and all cabling rerouted
 - Not a single channel lost.

Summary

- 10 years of operation completed in April 2008
- High efficiency and excellent data quality for the past several years.
- Problems encountered in last years were mostly repair and maintenance
- High luminosity achieved by PEP–II did not adversely affect EMC performance
- For the future:
 - SuperB factory has planned for reuse of barrel crystals and support structure for their electromagnetic calorimeter.

Backup Slides

Calorimeter Crystals

Distribution of crystals by vendor inside the barrel

 θ index \rightarrow

•

Calorimeter Design

- 6580 CsI(Tl) crystals 0.1% Thallium doping
- Barrel: 48 rings along θ and 120 crystals/ring
- Endcap: 8 rings along θ with 80/100/120 crystals/ring
- Angular coverage
 - Polar angle: $-0.785 < \cos(\theta) < 0.962$
 - Azimuthal: 360°

90% coverage in CM frame

- Crystals are non-projective in θ by 15mrad to minimize unmeasured energy loss due to inactive material between crystals.
 - Barrel↔Endcap gap fully covered by non-projectivity

Calorimeter Support Structure

Barrel:

- 280 carbon fiber modules \rightarrow 7 along θ ; 40 along ϕ
- Per module: 7 crystals in θ , 3 crystals along ϕ
- Endcap:
 - 20 carbon fiber modules \rightarrow 8 crystals along θ ; 4/5/6 along ϕ

•

CsI(Tl) Crystal Properties

CsI(Tl) Properties

Radiation Length	$1.85~\mathrm{cm}$
Molière Radius	3.8 cm
Density	$4.53~{ m g/cm}^3$
Light Yield	50,000 $\gamma/{ m MeV}$
Ligh Yield Temp. Coeff.	$0.28\%/^{\circ}\mathrm{C}$
Peak Emission (λ_{max})	565 nm
Refractive Index (λ_{max})	1.80
Signal Decay Time	680 ns (64%)
	$3.34 \ \mu s \ (36\%)$

Electronics Calibration

- Calibrate gains by injecting known charge into preamps ٠
- Different capacitors used to cover entire ranges (x1/4/32/256)•
- Fit all 4 ranges simultaneously •

Good Channel

Problem Channel

Radioactive Source Calibration

Left Plot:

- Relative lightyield change over lifetime of BaBar.
- Yellow bands represent periods of no collisions