The Belle Calorimeter — Operation and Upgrade —

XIII International Conference on Calorimetry in High Energy Physics

Pavia, Italy, 26-30.May.2008

中村 勇/高エネルギー研

The Belle Calorimeter (1)

Requirement to the Calorimeter

- Detection of γ and π^0
- Good Energy Resolution from Low *E* \$ 10 MeV to 10 GeV
 - $\diamond \sigma$ has linear effect for some physics
- Hermeticity for final state with *v*
- Rate resistance

□ 8736 CsI(Tl) Crystals

- 5.5×5.5×30 cm³
- 6624(B)+1152(FWD)+900(BWD)
- $\lambda = 560 \text{ nm}/\tau = 1.3 \ \mu \text{sec} \text{ (Slow)}$
- $12^{\circ} \leftrightarrow 155^{\circ}$
- 50000 p.e./MeV (No stochastic term)
- 64 Different Shapes
- Read out by two PIN photodiode

The Belle Calorimeter

The Belle Calorimeter (2)

Readout Electronics

- Hamamatsu 10×20 mm² PIN photodiod (S2744-08)
- Preamplifier (Charge Integration)
- Two Shapers
 - ♦ $1\mu \text{sec} \Rightarrow \text{for } E \text{ measurement}$
 - ♦ 0.2 μ sec \Rightarrow for Trigger
- $Q \rightarrow T$ Translation
 - LeCroy MQT300A (12 bit×3 ranges)
 - ♦ 16ch/Board (TKO)
- Recorded by FastBus TDC
 - LeCroy 1877S (16 bit, C.Start)
 - ◊ 96ch/Board (5 Crates)
 - ◊ 3 VME Systems
 - \diamond Sparsification at $E_{\rm th} = 0.5 \, {\rm MeV}$
 - \diamond Readout Deadtime (~ 30 μ sec)
- Energy information Only, no timing

Counter

Calibration

Energy Reconstruction

$$E = \mathcal{G} \cdot \mathcal{C}(T - T_0)$$

- \diamond T_0 : Pedestal
- $\diamond \mathcal{G}$: Electronics Gain
- ◊ C : Conversion Factor
- Pedestals and Gains Monitord every day
 Calibration circuit in the Frontend
- Conversion factor determined by
 - $\diamond e^-e^+ \rightarrow e^-e^+$ Events (Main Mode)
 - ◊ e[−]e⁺→γγ Events
 - Cosmic Ray Events near beampipe
- Bhabha Calibration

minimize

$$\chi^{2} = \sum_{i \in \text{cls}}^{N_{\text{bb}}} \frac{\left(E_{\text{exp}} - \sum_{i \in \text{cls}} C_{i} \cdot E_{i}\right)^{2}}{\sigma^{2}}$$

Sparse Matrix Inversion

Energy Distribution

Environment and Monitoring

To keep constant environment

- Water Cooling (for Temperature)
- Dry Air circulation (for Humidity)

Environment Monitor

- Monitors
 - ◊ 312 Temperature Probes
 - ◊ 104 Humidity Probes
 - Bias Current Monitors
 - Power Supply Monitors
- All logged,
- connected to interlock/alarm system
- watched by safety shift
- Data Quality Monitor
 - Monitored by DAQ shift

Temperature of Calorimeter

Temperature of Power Supply

Problems – Radiation Damage –

Unexpected increase of Dark Current

- γ-ray resistance tested
 ◊ CsI(Tl) crystals up to 1 krad
 ◊ PD up to 70 krad
- γ -ray dose can be measured by $\int (I_{on} - I_{off})dt \sim \int E_{\gamma}dt$ estimated to be O(100) rad
- From ⁶⁰Co test $\Rightarrow O(100)$ krad

Turned out to be Neutron

- Crystals and PD tested @ Reactor "弥生"
 ◇ 1 nA ⇔ 7 × 10⁸ n/cm²
 ◇ 10¹¹ n/cm² for Foward
- PD and crystals can survive up to 10¹³

Increase of Dark Current

Problems – Accelerator Background –

\Box A lot of accelerator Background (γ)

- $\sum E_{cel} = 3-4$ GeV/event with $E_{th} = 0.5$ MeV
- $E_{\text{cel}}^{\text{bkg}}(\theta) = 0.3-1 \text{ MeV}$
- $\sum E_{cls} = 500 \text{ MeV}$ after clustering
- Several Fake clusters / Event
- Proportional to $I_{\text{beam}} \times P_{\text{V}} \sim I_{\text{beam}}^2$ \Rightarrow expect ×20 at 10³⁵

Effect to Physics

- Fake photons
- Photon finding Efficiency
 - Cluster Shape changes
- Energy Scale/ Resolution
- Random-Triggered events overlaid to Monte Carlo

Need to introduce Timing information

Problems – Accident –

Broken connection circuit

• Bias disconnected (one dead counter)

Water Circulation Stopped

• Rusted Water Tube Joint

🖵 Fastbus

• Bad contacts (~20 year old crates)

Power Supply

• Many broken cooling FANS

Human Resources

- No original member/expert on site
- only a few amateur to maintain
- No New student anymore
- In short, Everything gets OLD

History of ECL Temperature

Damaged Joint

Upgrade Plan

Expected Situation @ 10³⁵

- Trigger Rate as high as 10 kHz
- ×20 Background ($\propto I^2$)

Solutions

- Pipelined read out
- Waveform sampling
- Replacement to Faster Crystal

Restrictions

- Budget
- Barrel Replacement Unrealistic
- Human Resources
- Reuse Endcap Container

Projected luminosity (preliminary)

Expected Background Increase

Step 1 – Electronics Upgrade

- Reuse Crystal/PD/PreAmp
 - Unrealistic to Dismount Cryatals

Frontend @ Detector

- Faster shaper (1 μ sec \rightarrow 0.5 μ sec)
- Waveform sampling (18 bit/2 MHz)
- keep same trigger signal
- 16ch/board, ~550 boards, 50 crates

🖵 Backend @ E-hut

- Pipelined DAQ (COPPER/VME by KEK)
 - ◊ 128 deep (60µsec)
- Hardware waveform fitting (FPGA)
 - ♦ 16 sampling points
 - $\diamond F(t) = \overline{A} \cdot \mathcal{S}(t t_0) + B \cdot \mathcal{B}(t)$
- Data Suppression
- 128 ch/board, ~70 boards, 4 crates

Background Reduction Factor ~7

Expected Timing Distribution

Prototype Frontend Board

Electronics Upgrade – Preparation Status

Cosmic Ray Testbench

- 4×4 matrix
- TKO version of digitizer board
- 64 ch FINESSE for Fitting

Digitizer Board

- Basic Function working
- Form Factor in discussion (avoid TKO)
- Link to E-Hut in discussion (TRG/DAQ)

Readout Board (FINESSE)

- Working w/o Problem
- Hardware waveform fitting Working

Test in Belle

- will be installed to Belle in this summer
- take cosmic

Cosmic Ray Testbench

Stability Test

Step 2 – Crystal Replacement

Reuse containers

Undoped CsI crystal

- Only Resonable Solution
 LSO/LYSO is nice but too expensive
- 50 万円/crystal
- 0.1× p.e. compared with CsI(Tl)
- $\tau_{\text{fast}} = 10 -30 \text{ ns}, \lambda_{\text{fast}} = 310 \text{ nm}$

Photo Detector candidates

- Short Finemesh Phototube ($\mathcal{G} \sim 200$)
- Flat MCP/PMT with 10 μ m ϕ pore
- Avalanche Photo Diode (CMS type)

Frontend

- Fast Shaping
- 3×12 bit FADC/42 MHz sampling
- Hardware fitting in frontend

Prototype Counter

Short Phototube

Crystal Replacement – Preparation Status

CsI(Pure) Crystal

- Bought from different producers
- Measured basic properties
 * # p.e./MeV, uniformity ..
- Radiation Hardness
 - \diamond 100 krad for γ
 - ♦ 10¹³ neutron/cm²

Phototube

- Gain
- Effect of Magnetic Field

🖵 Test beam

- @ BINP (70–160 MeV γ beam)
- 4×5 crystals with phototubes

Magnatic Field Test

Belle Calorimeter

- CsI(Tl) + PIN PD
- Traditional(Conservative) Trigger/ADC readout

Problems

- Radiation Damage of PD
- Increase of Accelerator Background (0.5 MeV/cel)
- Many Troubles as the Detector gets Old

Upgrade Step.1

- Waveform Readout (1 μs)
- Pipelined Readout
- Factor 7 Improvement

Upgrade Step.2

- CsI(Pure) + Phototube (10 ns) for Endcaps
- Factor 20 Improvement

