The Belle Calorimeter
— Operation and Upgrade —

XIII International Conference on Calorimetry in High Energy Physics
Pavia, Italy, 26–30.May.2008

中村 勇 / 高エネルギー研
The Belle Calorimeter (1)

- **Requirement to the Calorimeter**

 - Detection of γ and π^0
 - Good Energy Resolution from Low E
 - 10 MeV to 10 GeV
 - σ has linear effect for some physics
 - Hermeticity for final state with ν
 - Rate resistance

- **8736 CsI(Tl) Crystals**

 - $5.5 \times 5.5 \times 30$ cm3
 - $6624(B) + 1152(FWD) + 900(BWD)$
 - $\lambda = 560$ nm/$\tau = 1.3$ μs (Slow)
 - $12^\circ \leftrightarrow 155^\circ$
 - 50000 p.e./MeV (No stochastic term)
 - 64 Different Shapes
 - Read out by two PIN photodiode

The Belle Calorimeter
The Belle Calorimeter (2)

- **Readout Electronics**
 - Hamamatsu 10×20 mm² PIN photodiod (S2744-08)
 - Preamplifier (Charge Integration)
 - Two Shapers
 - 1 µsec ⇒ for E measurement
 - 0.2 µsec ⇒ for Trigger
 - Q → T Translation
 - LeCroy MQT300A (12 bit×3 ranges)
 - 16ch/Board (TKO)
 - Recorded by FastBus TDC
 - LeCroy 1877S (16 bit, C.Start)
 - 96ch/Board (5 Crates)
 - 3 VME Systems
 - Sparsification at $E_{th} = 0.5$ MeV
 - Readout Deadtime (~ 30 µsec)
 - Energy information Only, no timing
Calibration

- **Energy Reconstruction**

\[E = \mathcal{G} \cdot C(T - T_0) \]

- \(T_0 \): Pedestal
- \(\mathcal{G} \): Electronics Gain
- \(C \): Conversion Factor

- Pedestals and Gains Monitored every day
 - Calibration circuit in the Frontend

- Conversion factor determined by
 - \(e^- e^+ \rightarrow e^- e^+ \) Events (Main Mode)
 - \(e^- e^+ \rightarrow \gamma \gamma \) Events
 - Cosmic Ray Events near beampipe

- Bhabha Calibration
 - minimize

\[
\chi^2 = \sum \frac{(E_{exp} - \sum_{i \in \text{cls}} C_i \cdot E_i)^2}{\sigma^2}
\]

- Sparse Matrix Inversion
Environment and Monitoring

- To keep constant environment
 - Water Cooling (for Temperature)
 - Dry Air circulation (for Humidity)

- Environment Monitor
 - Monitors
 - 312 Temperature Probes
 - 104 Humidity Probes
 - Bias Current Monitors
 - Power Supply Monitors
 - All logged,
 - connected to interlock/alarm system
 - watched by safety shift

- Data Quality Monitor
 - Monitored by DAQ shift
Problems – Radiation Damage –

- **Unexpected increase of Dark Current**
 - γ-ray resistance tested
 - CsI(Tl) crystals up to 1 krad
 - PD up to 70 krad
 - γ-ray dose can be measured by
 \[
 \int (I_{on} - I_{off}) dt \sim \int E_\gamma dt
 \]
 estimated to be $O(100)$ rad
 - From 60Co test $\Rightarrow O(100)$ krad

- **Turned out to be Neutron**
 - Crystals and PD tested @ Reactor “弥生”
 - 1 nA $\Leftrightarrow 7 \times 10^8$ n/cm2
 - 10^{11} n/cm2 for Forward
 - PD and crystals can survive up to 10^{13}
Problems – Accelerator Background –

- A lot of accelerator Background (γ)
 - $\sum E_{cel} = 3$–4 GeV/event with $E_{th} = 0.5$ MeV
 - $E_{cel}^{bkg}(\theta) = 0.3$–$1$ MeV
 - $\sum E_{cls} = 500$ MeV after clustering
 - Several Fake clusters / Event
 - Proportional to $I_{beam} \times P_V \sim I_{beam}^2$
 \Rightarrow expect $\times20$ at 10^{35}

- Effect to Physics
 - Fake photons
 - Photon finding Efficiency
 - Cluster Shape changes
 - Energy Scale/ Resolution
 - Random-Triggered events overlaid to Monte Carlo

- Need to introduce Timing information
Problems – Accident –

- Broken connection circuit
 - Bias disconnected (one dead counter)

- Water Circulation Stopped
 - Rusted Water Tube Joint

- Fastbus
 - Bad contacts (~20 year old crates)

- Power Supply
 - Many broken cooling FANS

- Human Resources
 - No original member/expert on site
 - only a few amateur to maintain
 - No New student anymore

- In short, Everything gets OLD
Upgrade Plan

- **Expected Situation @ \(10^{35}\)**
 - Trigger Rate as high as 10 kHz
 - \(\times 20\) Background (\(\propto I^2\))

- **Solutions**
 - Pipelined read out
 - Waveform sampling
 - Replacement to Faster Crystal

- **Restrictions**
 - Budget
 - Barrel Replacement Unrealistic
 - Human Resources
 - Reuse Endcap Container
Step 1 – Electronics Upgrade

- **Reuse Crystal/PD/PreAmp**
 - Unrealistic to Dismount Crystals

- **Frontend @ Detector**
 - Faster shaper ($1 \mu \text{sec} \rightarrow 0.5 \mu \text{sec}$)
 - Waveform sampling (18 bit/2 MHz)
 - keep same trigger signal
 - 16ch/board, ~550 boards, 50 crates

- **Backend @ E-hut**
 - Pipelined DAQ (COPPER/VME by KEK)
 - 128 deep (60μsec)
 - Hardware waveform fitting (FPGA)
 - 16 sampling points
 - $F(t) = A \cdot S(t - t_0) + B \cdot B(t)$
 - Data Suppression
 - 128 ch/board, ~70 boards, 4 crates

- **Background Reduction Factor ~7**

Expected Timing Distribution

Prototype Frontend Board
Electronics Upgrade – Preparation Status

- **Cosmic Ray Testbench**
 - 4×4 matrix
 - TKO version of digitizer board
 - 64 ch FINESSE for Fitting

- **Digitizer Board**
 - Basic Function working
 - Form Factor in discussion (avoid TKO)
 - Link to E-Hut in discussion (TRG/DAQ)

- **Readout Board (FINESSE)**
 - Working w/o Problem
 - Hardware waveform fitting Working

- **Test in Belle**
 - will be installed to Belle in this summer
 - take cosmic

![Cosmic Ray Testbench](image1)

![Stability Test](image2)
Step 2 – Crystal Replacement

- Reuse containers
- Undoped CsI crystal
 - Only Reasonable Solution
 - LSO/LYSO is nice but too expensive
 - 50万円/crystal
 - 0.1× p.e. compared with CsI(Tl)
 - $\tau_{\text{fast}} = 10 - 30$ ns, $\lambda_{\text{fast}} = 310$ nm
- Photo Detector candidates
 - Short Finemesh Phototube ($G \sim 200$)
 - Flat MCP/PMT with 10 μmφ pore
 - Avalanche Photo Diode (CMS type)
- Frontend
 - Fast Shaping
 - 3×12 bit FADC/42 MHz sampling
 - Hardware fitting in frontend
Crystal Replacement – Preparation Status

- **CsI(Pure) Crystal**
 - Bought from different producers
 - Measured basic properties
 - # p.e./MeV, uniformity...
 - Radiation Hardness
 - 100 krad for γ
 - 10^{13} neutron/cm2

- **Phototube**
 - Gain
 - Effect of Magnetic Field

- **Test beam**
 - @ BINP (70–160 MeV γ beam)
 - 4×5 crystals with phototubes
Belle Calorimeter

- CsI(Tl) + PIN PD
- Traditional(Conservative) Trigger/ADC readout

Problems

- Radiation Damage of PD
- Increase of Accelerator Background (0.5 MeV/ceil)
- Many Troubles as the Detector gets Old

Upgrade Step.1

- Waveform Readout (1 μs)
- Pipelined Readout
- Factor 7 Improvement

Upgrade Step.2

- CsI(Pure) + Phototube (10 ns) for Endcaps
- Factor 20 Improvement
終り