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The Tevatron at Fermllab
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Main Injector

The Tevatron
Proton-antiproton collider with bunch crossings of 396 ns

Collisions occur at a center-of-mass energy Vs = 1.96 TeV

More than 4 tb™"' of data delivered (over 3.5 fb'recorded!)

. . Dan Duggan
Instantaneous luminosities greater than 3x10°*cm™s™




DO Detector

i R
- AR remem i Muon Scintillation s
A : Forward Mini- : e nsenenn s 5 Counters :

E /_‘—' _Drift Tubes : Muon Toroid : IO it oak e RO, s e
NOR TH A g s arerstpr i Lt il . SOUTH
1 E B ., A M

T oES /T
\\& \NI\\ N \\\&

Mﬁ

Sh:e-l'dmg

(m)o —L& . — e o

-5 — 3 et
7 . 5 & O O
. FPlatform O O j/;
[ ]

sl || —

! Tracking System: Silicon, Fiber Tracker, i e o RS B e e
i Solenoid, Central & Forward Preshowers : i Fiber Tracker/Preshower VLPC Readout System :

'...T.......T.......T.......T.......T.......l........T.......T...: | l........l........l........l........l........l........l........l.......r.......l..... | | |
= -5 '] 5 10

(m)




Original Run I detector with
upgraded electronics
e 3liquid argon cryostats
- 1 central, 2 endcap
- Hermetic coverage n| < 4.2
~48,000 readout channels
- Longitudinal segmentation

END CALORIMETER
QOuter Hadronic
(Coarse)

Middle Hadronic
(Fine & Coarse)

N * 14 layers in total
CENTRALY .
Electromagnetic pSeudO—pm]ectlve towers
Inner Hadronic Fine Hadronic ; R
(Fine & Coarse) Coarse Hadronic “‘ :

T — Central preshower

* Inter-Cryostat Detector (ICD)
- Provides scintillator-based coverage
between central and endcap cryostats
e (Central(CPS) and Forward(FPS) Preshowers
- Additional particle position and energy
measurements before calorimeter




The Calorimeter Cell

Thickness in X,

Absorber

Fiegisiive CCEM 2+2+7+10 Uranium (3mm)
| H I l Absort)eAr F(’alates G10
I Gaps
)/’WE -F“tp—h x/ CCFH 1.3+1+0.9 Uranium (6mm)
07 I

|
! | ' o, | cCcH 3 Copper
Preamp/ : 7Pads (46.5mm)
Priveg I I ECEM| 0.3+3+8+9 | Iron (1.4mm)
" | + Uranium (4mm)
NP S - ECFH| 1.3+1.2+1.2 | Uranium (6mm)
le—1 Unit Cell —{ +1.2
EC CH 3+3+3 Iron (46.5mm)

e ~2kVolt potential across liquid argon gaps
e Drift time ~450ns of electrons

* Fine An x A¢ segmentation (0.1 x0.1)
- 0.05x0.05 in the 3" EM layer

INo Possible Access|
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The Preamplifiers
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* Preamplifiers minimize cell-to-cell differences
» Accounts for varied cell capacitances
* Minimizesimpedance effects
- Drives integrated physics signal
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Amplitude

Detector signal
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Trig. sum Bank 0 BLS Card

-g SCA (48 deep)

=
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'_Q‘.. Shaper g& Buffer
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= SCA (48 deep)

Bank 1

800 1200
—————— .
g Trigger tower
Precision tower

* Analog trigger energy summing for L1 decisions

* Signal shaping for fast precision signal processing
e 2signal paths provide 15 bit analog dynamic range

- Switched Capacitor Arrays used to store events
while waiting for trigger decisions

Access only without beam|
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Analog to Digital Converter

Igll

* The analog signal is digitized
- Noise is reduced by a 2.5 ¢ suppression
- Qutput sent for tower energy reconstruction
Also used for final trigger decision
e All electronics timing is controlled here
- Timing and control card
 Communicates with accelerator clock
e Manages trigger signals and event memory

Accelerator
Clock
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ONLINE Monitoring

Praamp

e Electronics monitored by direct hardware readout
- Thousands of values at all levels including

temperature, currents, voltages (high and low)
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ONLINE Monitoring

Hardware is also monitored in the signal output:
- Signal output is shown in quantities such as:
* Occupancy and energy mapping
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Electronics Monitoring

* Hardware is also monitored in the signal output:

|H|I - Signal output is shown in quantities such as:
* Occupancy and energy mapping

* Reconstructed missing energy (MET)
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Shifters monitor system 24 hours a day
- Problems are also linked to automated alarms
- Event monitoring contain inline quality flags
Pager-carrying experts handle the rest
- 2 experts always on call
Online documentation, reports, and logs of data
quality, repairs and problems maintained

Dan Duggan
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Hardware Stability

 Hardware has shown remarkable stability in Run II

- More than 99.8% of calorimeter operational
|H|'  Problems that do occur are

- Baseline Subtraction system
e Daughtercards (< 0.025% of all channels)
- ~1 failure/week, 30 minute replacement
* Motherboards (< 0.1% of all channels)
— ~ 1 failure/month, 30 min. replacement
e Power supplies
- ~1 failure per four months
— ~2 hours needed for replacement
- Preamplifiers
e Power supply failures
- ~1 failure every three months
— ~8-10 hours needed for replacement
- Backup supplies are connected and in
place in case of primary failure

Dan Duggan
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Run 220928 Evt 112461687 Wed May 31 17:16:34 2006 I —
METY: no CH (ZERD BIAS) I
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) How to find events affected by noise?
- Online and offline algorithms implemented to
scan data for contaminated events
* Failures have distinct features
* Most channel failures can be excluded to
resume data taking within a few minutes
* Performing frequent calibrations is the
best preventative maintenance

Dan Duggan
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Online Calibrations

A ADC Count
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* Pedestal calibrations:
* Performed daily for both gain paths
* Measure average values without beam
* Changes in pedestal values from a
reference set as a stability cross-check
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Online Calibrations

e Pulser energy calibrations:

* Always performed after hardware changes
- Insert known charge at the preamps
) — Compare to response of electronics
* Test channel by channel response

- Sample over entire dynamic range
- Derive higher order corrections
- Overall stability of response also tested

A Correction coefficient
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* The correct cell energy depends on timing

- Sample amplitude before, at and after signal peak
- Performed channel by channel

> 90% of all channels see a 0.5% difference or less
* Performed every 6 months
- Overall results very stable with time

Dan Duggan
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Calibrate cells in ¢ rings to equalize response

— Assume physics to be ¢ independent
- Beams from Tevatron come unpolarized
- Dependences from detector itself
Calibrate overall cell energy response
- Performed after all other calibrations have
been taken into account
Calibrations use ~5-15 million events
- Data taken parasitically with normal running
- Stability checks performed every six months
- Variations in time periods are very small and
overall the system is very stable
* Uncertainties in central region are ~0.7%

Dan Duggan
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Conclusions

D@ calorimeter has performed efficiently and reliably

- > 90% efficiency for the entire detector for the Tevatron Run II period

Data quality is thoroughly monitored
- Performed online and offline for both hardware and reconstructed events
- Potential noise sources closely watched
Calibration and overall stability are the priority
- Daily online calibrations and higher level studies routinely performed
- >99.8% of all channels perform well
- Problems that occur typically affect < 0.2% of channels and are quickly
fixed
We look forward to more data and continued highly efficient running!

Dan Duggan
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.1 Calorimeter

* Dynamic Pedestal Calibrations New values derived every ~2-3 minutes

- Tower energy offsets

Removes instantaneous luminosity effects
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e Online operations

Very good agreement between
the trigger and precision readout
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- Currently five excluded trigger towers ( < 0.5% of all towers)

- Automated run pausing alarms included online
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The Calorimeter Chain

Calorimeter Cells No Possible Access

Baseline Subtraction Access only without beam

L1 Trigger System Unlimited Access
Analog to Digital Converters

@ To Data Acquisition System



Calorimeter Profile
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Calorimeter Layer Mapping
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