The ALICE PHOS Calorimeter

Hisayuki Torii for the ALICE-PHOS Collaborations
CALOR 2008, Pavia Italy
Photons from Heavy Ion Collisions

- **Hadronization (Freeze-out) + Expansion**
- **Mixed phase**
- **QGP phase?**
- **Thermalization + Equilibrium**

Thermal Photon
- Thermal Photon (QGP)
- Thermal Photon (HG)

Jet+Medium
- Jet-Photon Conversion
- Jet-Bremsstrahlung (QGP)

Prompt Photon
- Compton/Annihilation
- Fragmentation
Indirect Photon Method
First Direct Photon Excess seen at low pT
Temperature from thermal photon measurement results in 300-500 MeV

Photon excess is predicted at pT<10 GeV

High Multiplicity (~12000 h±/η)
Wide Dynamic Range (0.1-80 GeV)

Advantage at LHC
• Higher temperature, Longer QGP lifetime, Larger background photon suppression
Heavy Ion Collisions at LHC

\[p+p \quad \sqrt{s} = 14 \text{ TeV} \]
\[\text{Pb}+\text{Pb} \quad \sqrt{s_{\text{NN}}} = 5.5 \text{ TeV/A} \]

Energy

\[\text{LHC} = 28 \times \text{RHIC} = 320 \times \text{SPS} = 1000 \times \text{AGS} \]
Photon Detectors at LHC

<table>
<thead>
<tr>
<th>Exp.</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ALICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LAr Barrel</td>
<td>LAr Endcap</td>
<td>ECAL(EB)</td>
</tr>
<tr>
<td>Structure</td>
<td>Liquid Ar</td>
<td>PWO + APD</td>
<td>PWO + APD</td>
</tr>
<tr>
<td>Coverage</td>
<td>0<</td>
<td>η</td>
<td><1.4, 2π</td>
</tr>
<tr>
<td>Granularity</td>
<td>0.003x0.0100</td>
<td>0.0025x0.1000</td>
<td>0.025x0.025</td>
</tr>
<tr>
<td>Res.</td>
<td>10%/√E⊕0.5%</td>
<td>10%/√E⊕0.5%</td>
<td>2.7%/√E⊕0.55%</td>
</tr>
</tbody>
</table>

ALICE-PHOS aim at low energy photon meas.
Photon Spectrometer (PHOS) Electro-Magnetic Calorimeter
PHOS Calorimeter

PbWO₄ Crystal
- Fast Signal (~nsec),
- Smaller Moliere Radius (2cm) ➔ Good 2 photon Separation

Avalanche Photo Diode (APD)
- High Q.E. (60%-80%)
- Thin photo-sensor
- Operational in magnetic field

Combination of recent high technology.

- Total 17920 channel
 100deg -0.12<\(\eta\)<0.12

Operation at -25deg

About 12.5 ton
PbWO₄ Crystal + APD

PbWO₄ Crystal
- 22 x 22 x 180 mm³, ~20,000yen/crystal
- ~2cm Moliere Radius, 20X₀, 8.2g/cm³
- Scintillation light (400nm-500nm)
- Operation at -25deg → 25ns decay, 230pe/MeV
- With APD acceptance:
 - 4.5pe/MeV@-25deg, 1.45pe/MeV@+20deg
- North Crystal Co. Apatity in Russia

APD
- High Q.E.(60%-80%)
- Low noise and capacitance
- Thin photo-sensor
- Operational at low temperature and in magnetic field
Front-End Electronics

• Basic Properties
 ▫ 349x210mm², 5.5Watt
 ▫ 32ch dual gain shapers (2usec)
 ▫ Noise 615e- (=3.1MeV)
 ▫ 14bit dynamic range 5MeV-80GeV
 ▫ 32APD bias regulators
 ▫ Fast 2x2 OR outputs
 ▫ Board controller FPGA

† R&D CERN April-June 04
† Cadence Schematics: CERN June 04
† 10 layer Layout & mounting : Wuhan August/Sept 04
† Prototypes in Testbeam: October 04
† Evaluation: CERN Nov-Dec 04
† Revision: Jan 05
† Review and final testing: Mai-Sept 05
† 130 card production Wuhan by end 2005 for first module
† 250 card production Wuhan by end 2007 for second/third module

FEE mass production for first 3 modules was done
PHOTON Trigger Feasibility

Photon trigger with sophisticated requirement is capable by programmable FPGA.
Control and Monitoring

- Detector Control System (DCS)
 - Control and Monitoring
 - Cooling System
 - Cooling plant and temperature and humidity monitoring.
 - Power Supply (HV, LV)
 - LED System
 - LED operation
 - FEE
 - Configuration.
 - LV and temperature monitoring.

- High Level Trigger (HLT)
 - Online Data Monitoring
 - Online Calibration
 - Data Reconstruction and Compression
 - Event Selection

Cosmic Ray Event in 2007
Test Beam in 2006

- First Module Test
 - 2006/6月～8月
 - CERN/PS T10 Beam line
 - Operated at about -17deg
 - Irradiated by 1-5GeV/c electron, π-

The energy resolution is consistent with that of a prototype.
Operation by ALICE Standard DAQ system
Cosmic Ray in 2007 & Installation in 2008

- **First module test in 2007**
 - Irradiate cosmic-ray on all xtals.

- **Installation in 2008**
 - Second Module was installed on May/2008.
 - Will be operated at +18deg temperature during the first pp run at LHC.
 - First and third modules are basically ready and they are under mechanical upgrade now to fulfill the air-tightness requirement. They will be tested in the lab in 2008 with cosmic and/or electron beam and will be installed in ALICE during shutdown after first LHC beam.
Future Plan

- **2007**: LHC Close 08/June
- **2008**: 10TeV p+p
- **2009**: 14TeV p+p
 - 5.5TeV Pb+Pb?
 - 5.5TeV Pb+Pb
 - 1/20 luminosity (5x10^25)
 - Designed luminosity (10^27)
- **2010**: p+Pb

First Module
- Const.
- Adjustment
- Air tight

Second Module
- Const.
- Installed

Third Module
- Const.

Modification for
- Air tight second module

During a shutdown after first p+p runs,
- 2 modules will be installed.
- Ready for first Pb+Pb runs.

Forth/Fifth Modules
- Const.

All five modules will be installed
- before full luminosity Pb+Pb runs.
PHOS Potential (1) : Neutral Pion

WA98 (CERN)

PHENIX (BNL)

ALICE (CERN)

Pb+Pb 13GeV

p+p 200GeV run2

p+p 14TeV

GEANT simulation

\[m_{\pi^-} - m_0 \in 0.9 - 1.0 \text{ GeV/c}^2 \]

\[m_{\text{inv}} \text{ (GeV/c}^2) \]

\[\pi^0 (E=5-6\text{GeV}) \]

\[(\pi^- + ^{12}\text{C} \rightarrow \pi^0 + X) \]

13MeV width of \(\pi^0 \)@1GeV/c

5-6MeV

Improvement of particle identification compared to the other HI exp.
PHOS Potential (2) : Thermal Photon

Without Jet Quenching

With Jet Quenching

Systematic error in thermal photon measurement is well smaller than statistic error at the pT > 3 GeV/c
Summary

- Physics requirement.
 - Thermal photon measurement requires wide dynamic range 0.1-100GeV. High energy resolution. High granularity for high multiplicity events.
- PHOS Structure
 - PbWO4 Crystals + APD
 - Operated at -25deg and at magnetic field
 - Front-End Electronics with wide dynamic range
 - Photon trigger with sophisticated algorithm is feasible
- Production Status
 - First module was tested by electron beam and cosmic-ray
 - Second module was installed and will be operated controlled temperature +18deg.
 - After a first shutdown in the end of 2008, three air-tight modules will be ready for installation.
- PHOS potential
 - Several physics measurement (π⁰, direct photon, direct photon-jet correlation) in first p+p collisions at s=10TeV is feasible.
 - Enough systematic error for identifying thermal photon production in heavy ion collisions. Waiting for Pb+Pb beams