

Calor 2008

XIII International Conference on Calorimetry in High Energy Physics

Operation and performance of the CDF calorimeters

Giovanni Pauletta University of Udine

on behalf of the

collaboration

G. Pauletta

Outline:

- The CDF calorimeters
- Setting and the calorimeter energy scales
- Keeping the calibrations
- Jet energy scales
- Conclusion

The CDF Calorimeters

All scintillator-based sampling calorimeters

$ \eta $ Range	$\Delta \phi$	$\Delta \eta$
0 1.1 (1.2 h)	15°	~ 0.1
1.1 (1.2 h) - 1.8	7.5°	~ 0.1
1.8 - 2.1	7.5°	~ 0.16
2.1 - 3.64	15°	0.2 - 0.6

Table 1.2: CDF II Calorimeter Segmentation

Central Hadronic Calorimeter(CHA)

Thickness (CHA alone)	4.7 λ
Abs. (Fe) layer	2.5 cm
Scint. layer	1 cm-thick , PMMA doped with 8% Naphtalene, 1%Butyl-PBD and .01% POPOP
w.l.s.	UVA PMMA doped with 30 mg/l laser dye #481
РМТ	12-stage THORN-EMI 9954 +dc led
light yield	~20 p.e./GeV/pmt (& decreasing)
resolution	$\sim 50\% / \sqrt{E_T}$

Fig. 4. Two WLS strips collect light from each scintillator layer. In the air gap between WLS and light guide, filters are inserted to ensure light output equalization for different layers of the same tower.

G. Pauletta

Wall Calorimeter (WHA)

Thickness (WHA alone)	4.5 λ
Abs. (Fe) layer	5 cm - thick
Scint. layer	1 cm-thick , PMMA doped with 8% Naphtalene, 1%Butyl-PBD and .01% POPOP
w.l.s.	UVA PMMA doped with 30 mg/l laser dye #481
РМТ	10-stage THORN-EMI 9954 +dc led
light yield	~10 p.e./GeV/pmt (decreasing)
resolution	~ 60% / $\sqrt{E_T}$

Fig. 2. Endwall calorimeter module. Module side faces are equipped with steel tubes positioned on the center lines of the towers and used for insertion of linear γ sources (section 4.2). The movable point source (section 4.3) is also schematically drawn: the source, moving inside a steel tube, traverses all the towers at a fixed longitudinal depth along scintillator center-lines.

Plug Calorimeters: scintillator – tile sampling calorimeters with w.l.s. fiber readout

	PEM	PHA	
Coverage	$1.1 < \eta < 3.64$	$1.2 < \eta < 3.64$	PES HAD WALCH CALOR IMETER
Towers	20 per wedge	18 per wedge	POSITION DETECTOR
Thickness	$21 X_0, 1 \lambda_I$	$7 \lambda_I$	Benind 4 th plate $@ ~ \delta X_0$
Density	$0.36 \ ho_{ m Pb}$	$0.75 \ ho_{ m Fe}$	CRYOSTAT 9,82 52 59 00 00 00 00 00 00 00 00 00 00 00 00 00
Sampling	22 + PPR	10 mm DC 109	
Layers	PPR = Layer 1	10 IIIII DC408	RACKING 10.50
Scintillator	4mm SCSN38	6mm SCSN38	13.80
Absorber	4.5mm Pb with	$5.08 \mathrm{cm}$ Fe	HADRON CALOR IMETER
	$0.5 \mathrm{mm} \mathrm{SS} \mathrm{covers}$		
Light	5 pe/mip/tile	5 pe/mip/tile	
	400 pe/GeV	40 pe/GeV	
Light x-talk	0.5% per side	1.0% per side	
σ/E	$0.16/\sqrt{E} \oplus 0.01$	$0.74/\sqrt{E} \oplus 0.04$	BEAMLINE
PMTs	Hamamatsu	Hamamatsu	21, 100
	R4125	R4125	68. 1721 1721

PEM and PHA detail summary

G. Pauletta

Plug Electromagnetic Calorimeter (PEM)

15° megatiles

PEM megatile and plug segmentation

G. Pauletta

CALOR2008

Plug Hadronic Calorimeter (PHA)

30° Megatiles

G. Pauletta

Calorimeter Readout:

Common design of readout electronics for most calorimeter elements:

"ADMEM" (ADC+MEMory) [8] boards. The ADMEMs provide the Level 1 trigger with transverse energy sums using Xilinx FPGA's. They also use a pipelined Level 1 buffer 42 clock-cycles (5.5 s) deep (which provides deadtimeless readout), and four event buers for pre-decision Level 2 storage.

Fig. Simplified schematic of frontend (CAFÉ)card containing QIE and FADC

Pipe

line.

G. Pauletta

CALOR2008

Calib.

Volt-O-We

Calib Triig,

Calibration/Monitoring Instrumentation

Calibration systems are used to transfer calibrations from test beam and monitor stability/functionality

Sub-system	Rad.	Laser	leds	e.g. CEM CDF Central E-M Calorimeter
	Sources	/flasher		Calibration Systems
CEM	Cs ¹³⁷ (?)	flasher	yes	Monitoring systems Light path
CHA	Cs ¹³⁷	laser		Cs Scintillator
WHA	Cs ¹³⁷	laser		source drive Electronics
PEM	Co ⁶⁰	laser		Xenon flash box Wavelength shifter
PHA	Co ⁶⁰	laser		Central calorimeter calibration calibration
PES	Co ⁶⁰	laser		Light guide
TDC		Laser		
electronics				box Transition piece
QIE	Charge inject	ion		Photomultiplier Photomultiplier tube RABBIT card
Electronics				Fig 2

G. Pauletta

Setting the Calorimeter Energy scales

- All HVs set to nominal gain (2 pC/GeV for CEM/CHA/WHA).
- Modules exposed to test beam (e, π , μ) and rad. sources.
- Dimensionless correction factors known as LERs (Linear Energy Response) are applied to correct for differences:

 $LER(t) = \frac{\text{nominal gain}}{\text{real gain}(t)}$

• After correcting for LERs one can apply unique "Scale Factor"(SCL) to all channels

 $E_i(GeV) = count_i^{raw} \times LER_i(t) \times SCL(GeV/count)$

• calibrations are "transferred" to detector by repeating rad. Source calibrations "in situ" with eventual small adjustments to LERs

Plug calorimeter test beam

Calibration Transfer

Calibrations transferred from test beam to B0 using source calibration systems.

Transfers took into account:

- difference in sources (Cs¹³⁷/Co⁶⁰)
- magnetic field effects on Scintillator (brightening)
- differences in readout electronic (RABBIT vs. QIE) gain
 (11.4 vs 5.758 fC/count)
- differences in charge integration gate widths (132 ns vs 2.2 μs)

SCL(PEM) = 3.769 MeV/count SCL(PHA) = 3.097 MeV/count

G. Pauletta

Transferred Plug LERs

Figure 4: The Nov 2001 LERs for the PEM and PHA versus the gemetrical ID. The west side of the detector are the points on the left side. Each vertical band corresponds to the towers in a wedge.

G. Pauletta

Keeping the calibrations

Run-time Calibration and Monitoring Organization & Management

Guidelines:

CDF data should be calibrated and run through (offline) "production" within 2 months of being taken.

Physics Coordinator

Sets schedule: calibrations in data – base every ~ 200 pb^{-1}

Calibration Coordinator

oversees "calibration group" of system experts, e.g. (for calorimeter systems) CEM, CHA, WHA, PEM, PHA, PES, HAD/EM timing. System experts expected to update the on-line calibration data-base weekly.

G. Pauletta

Types of calibrations:

- detector level H/W calibrations initiated manually by shift crew at ~ fixed intervals (e.g., daily). These are partially automated
- higher level automated calibrations: a calibration executable, that runs continuously, strips out and stores (e.g. ntuples) events (e.g. di-muon/electron events, min-bias events, jet events) for calibration purpouses.

Monitoring:

Takes place at different levels:

- * at calibration time by the shift crew, for manually initiated calibrations
 * weekly by the "experts" responsible for identifying/solving problems and producing weekly calibrations
- * by experts over longer periods in preparation for Offline "production"

Monitoring greatly facilitated by calibration Data Base and s/w (DBANA) G. Pauletta CALOR2008

QIE charge injection

calqie_badpeds.gif

Montored at run – time for

For bad channel ID

Run	Wedge	Channel	Cap	Detector	Mean (Ref)	Mean	RMS (Ref)	Sig
262688 262688 262688 262688 262688 262688 262688 262688 262688 262688 262688	4 E 6 E 7 W 7 W 7 W 15 W 15 W	00 <mark>166</mark> 000031313	0301012301	CEM CEEM PHA PHA PHA PHA PHA	182± 8 196± 8 201± 8 161± 8 223± 8 224± 8 144± 8 199± 8 151± 8 152± 8	191 178 188 184 176 160 200 204 141 142	0 <rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5 0<rms<5< td=""><td>1.87 1.88 1.59 1.47 37.63 35.90 34.77 35.30 1.32 1.29</td></rms<5<></rms<5 </rms<5 </rms<5 </rms<5 </rms<5 </rms<5 </rms<5 </rms<5 </rms<5 </rms<5 	1.87 1.88 1.59 1.47 37.63 35.90 34.77 35.30 1.32 1.29
262688	15 W	13 13	2	PHA	151±8 157+8	141	0 <rms<5< td=""><td>1.48</td></rms<5<>	1.48

calqie_badslopes.gif

and electronic gain monitoring

Run	Wedge	Channel	Cap	Range	Detector	Slope (Ref)	Slope
262789 262789 262789 262789 262789 262789 262789 262789 262789 262789 262789	20 W 20 W 20 W 20 W 20 W 20 W 20 W 20 W		0 0 1 1 1 2 2	0 1 2 3 0 1 2 3 0 1	РНА РНА РНА РНА РНА РНА РНА РНА РНА	3.40000 ± 0.25000 1.70000 ± 0.12500 0.85000 ± 0.06250 0.42500 ± 0.03125 3.40000 ± 0.25000 1.70000 ± 0.12500 0.85000 ± 0.06250 0.42500 ± 0.03125 3.40000 ± 0.25000 1.70000 ± 0.12500	0.00000 0.00000 0.38033 0.00000 0.00000 0.00000 0.38909 0.00000 0.38909
262789 262789	20 W 20 W	0	2	23	PHA PHA	0.85000±0.06250 0.42500±0.03125	0.00000

G. Pauletta

Higher-level calibrations

e.g. CEM LERs

adjusted to track detector response using "in situ" E/p for em "objects" from 8 GeV calib. trigger. ~3% annual drop in response due to scintillator aging.

0. x% variations in Z peak related to instantaneous luminosity

Also monitor LERs using min. bias rate stability at fixed η

G. Pauletta

CHA LERs

Some Rad sources unreliable. Monitor/adjust LERs using Mips (J/PSI muons). Set muon peaks to run I values.

Where muon statistics insufficient, fall back on monitoring min. bias rates at constant eta

WHA LERs

Rad sources in good shape

Trends in CHA & WHA LERs w.r.t.1988 source run

PEM/PHA LERs

1% – 8% η-dependent gain drop associated with both scintillator aging and PM "deterioration"(?)

So use both rad. Sources and Plug Laser to adjust LERs and investigate

Interpolate/extrapolate gain shifts linearly with luminosity

Occasional failure of HV boards due to radiation damage

G. Pauletta

Validation plots

Jet Energy scales

Very important for most analyses (major source of uncertainty in the top quark mass)

Jet energy measurement needs to be corrected for:

- energy loss due to acceptance
- non linearities in cal. response
- particle dependent cal. response
- etc

Need reliable M.C. e.g. Pythia + GFLASH

Jet Energy & Resolution group responsible for JE-scale

MC tuned for **absolute scale** by comparing with "in situ" particles (E/p) and measured fragmentation

Absolute scale has now recovered from upgrade and improved on run I

Dijet balancing used to calibrate the **relative scale** for jets forward of the central region (η >0.6). The forward jet is used to set the scale while the central jet is the "reference"

Validating can be done with Photon-Jet balancing

Conclusion

The CDF calorimeters are working at better than design expectations and are expected to survive without significant loss of performance.

Operational procedures have settled down for the home stretch.

The ball in now in the hands of the analysts who yet have to exploit all bells and whistles

More info

Table 1: Central Electromagnetic Calorimeter Summary.

Modules

	12/arch + 2 spare	50	
	Length	98 in.	
	Width	15° in ø	、 、
		(17.9 in. at 68+ in. from beamline	}
	Depth (including base plate)	13.6 in.	
	Weight	2 metric tons	
Towers		(78	
	10/module	4/0 A = 0.11 (1 of width)	
	Length (ma (Table 2)	$\Delta \eta = 11$ ($\frac{1}{3}$ of which β	
	Thickness (see Table 2)	20-10 land	
	Layers	21-31 scintillator	
		1 strip chamber	
	Land	1 in. aluminum clad	
	Sciptillator	5 mm SCSN-38 polystyrene	
	Wavelength shifter	3 mm Y7 UVA acrylic	
	Photomultiplier tubes (956 channels)	Hamamatsu R580 (11 in.)	
Chamb	era (see Table 4)		
Change	Depth	5.9 X ₀ (including coil)	EM:
	Wire channels (64/module)	3072	Thickness
	Strip channels (128/module)	6130	THICKICSS
Angula	r coverage		Sample (Pb)
•	0	about 39°-141°	Sample (scint)
	ف	complete	Gampie (Sente.)
	Pseudorapidity	about ±1.1	WLS
Perform	nance (high = $30 + \text{GeV}$)		Light viold
	pe/GeV	100+/tube	Light yield
	Energy resolution σ/E (GeV)	13.5%/VE	Sampling res.
	Position resolution (high)	±2 mm	Stoch and
	Strip/wire PH correlation	8-10%	otoch, res.
	Wire PH resolution (high)	12776 0 • u10-3	SM size (cm)
	Hadron rejection (at 50 GeV)	2-3 X 10 -	Det al companyation
	without strip chamber information		rre-snower size

G. Pauletta

Central

 $19X_0, 1\lambda \ 0.6X_0$

5 mm

sheet

 $\frac{160~{\rm pe/GeV}}{11.6\%/\sqrt{E_T}}$

 $14\%/\sqrt{E_T}$

 $1.4\phi \times (1.6-2.0)$ Z

 $1.4\phi imes 65 {
m Z~cm}$

Parameters of the Central hadron Calorimeter

Modules

Number of modules Length Width (in ϕ direction) Weight per module 48 2.5 m 1.33 m. 12,000 kg.

384

0.56 to 0.91 m.

0.28 to 0.45 m 4.7 ∧_{abs}

Towers

Total number (8/module) Length ($\Delta \phi = 15^{0}$) Width ($\Delta \eta = 0.11$) Total depth (hadron calorimeter alone)

Lavers

 Number
 32

 Steel thickness
 2.5 cm

 Scintillator thickness
 1.0 cm

 Scintillator type
 PMMA doped with 8% Naphtalene

 1% Butyl-PBD and .01% POPOP

 Wave shifters
 UVA PMMA doped with 30 mg/l

 Laser dye #481

 Number of phototubes
 768

Hadron:		
Thickness	4.5λ	
Sample (Fe)	1 in. C, 2 in. W	
Sample (scint.)	10 mm	
WLS	finger	
Light yield	$\sim 40 \text{ pe/GeV}$	

Table 1.3: Central and Plug Upgraded Ca parison

TABLE 2

Parameters of the End Wall hadron Calorimeter

Modules

Number of modules	48
Approximate dimensions	0.8 X 1.0 X 1.1 m ³
Weight per module	7,000 kg.

Towers

Total number (6/module) Length ($\Delta \phi = 15^{0}$) Width ($\Delta \eta = 0.11$) Total depth (hadron calorimeter alone) 288 0.35 to 0.78 m. 0.25 to 0.40 m 4.5 ∧_{abs}

Lavers

Number Steel thickness Scintillator thickness Scintillator type

Wave shifters

Number of phototubes

15 5 cm 1.0 cm PMMA doped with 8% Naphtalene 1% Butyl-PBD and .01% POPOP UVA PMMA doped with 30 mg/l Laser dye #481 576

G. Pauletta

Table 1: Central Electromagnetic Calorimetry Calibration Systems Summary.

Global parameters

•	Reproducibility specification	better than 1%
	One set of systems per module	50 (12/arch + 2 spare)
Cs ¹⁵⁷ source drive	system	
	Radioactive source	3 mCi Cs ¹⁵⁷ encapsulated
	Depth (from interaction region)	5.9X ₀ (shower maximum)
	Motor	190:1 gear ratio; nominal D.C. voltage 3.5 V
	Normal source speed	² / _s cm/sec
	Normal data rate	3-5 Hz
	Source peak fitting algorithm	6th-order polynomial fit to top 20% of peak with maximum found by Newton's method
	Typical peak value	$50.0 \pm 0.2 \text{ nA}$
	(when source decay is compensated)	
Xenon flash system	n	and a second second second second
	Light distribution	Xenon flash bulb illuminating scintillator in turn illuminating 20 quarts light fibers and 3 PIN diodes; light fibers enter each waveshifter through prism
	Light pulse characteristics	100 ns rise time; 100 ns fall time
	Regeneration time	< 10 ms
	Jitter from trigger to pulse	±15 ns
LED flash system		
	Light distribution	3 LEDs—2 of 3 illuminate 7 light fibers and one PIN diode each; remaining LED illuminates 8 light fibers, two of which share another LED for purposes of cross-calibration. Light fibers enter transition piece directly below phototubes.
	Light pulse characteristics	50 ns rise time; 50 ns fall time
	Regeneration time	< 1 ms
	Jitter from trigger to pulse	±5 ns
Performance		
	Short-term (< day) reproducibility	±0.3%
	Long-term (≈ month) reproducibility	±0.4%
	Original uniformity of energy response	±4.0%
	Current energy response mean and rms normalized to nominal	1.03 ± 0.08

32

PEM test beam calibration

From: E/p with e^+ and π^+ : 5 - 230 GeV

CALOR2008

$ \eta $ Range	$\Delta \phi$	$\Delta \eta$
0 1.1 (1.2 h)	15°	~ 0.1
1.1 (1.2 h) - 1.8	7.5°	~ 0.1
1.8 - 2.1	7.5°	~ 0.16
2.1 - 3.64	15°	0.2 - 0.6

Table 1.2: CDF II Calorimeter Segmentation

	Central	Plug
EM:		
Thickness	$19X_0, 1\lambda$	$21X_0, 1\lambda$
Sample (Pb)	$0.6X_{0}$	$0.8X_{0}$
Sample (scint.)	5 mm	4.5 mm
WLS	sheet	fiber
Light yield	160 pe/GeV	300 pe/GeV
Sampling res.	$11.6\%/\sqrt{E_T}$	$14\%/\sqrt{E}$
Stoch. res.	$14\%/\sqrt{E_T}$	$16\%/\sqrt{E}$
SM size (cm)	$1.4\phi \times (1.6-2.0)$ Z	$0.5 imes 0.5~{ m UV}$
Pre-shower size	$1.4\phi imes 65 { m Z~cm}$	by tower
Hadron:		
Thickness	4.5λ	7λ
Sample (Fe)	1 in. C, 2 in. W	2 in.
Sample (scint.)	10 mm	6 mm
WLS	finger	fiber
Light yield	$\sim 40 \text{ pe/GeV}$	39 pe/GeV

Table 1.3: Central and Plug Upgraded Calorimeter Comparison

G. Pauletta

