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Data and Monte Carlo Samples

• Simulate pions and protons in energy 
range (15, 230) GeV

• Geant 4.7 QGSP_BERT with 
consistent description of  fully 
combined test beam set-up 

• Divided into two statistically 
independent samples for calculating 
corrections and applying them

• ~4⋅106 events in total
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#ev after sel
Energy 
(GeV)

Particle
Proton 
fraction

~8000 20 π+ 0 %

~15000 50 π+ 41 %

~7000 100 π+ 59 %

~5000 180
Select π+ 
from e+ 

run
75 %

Data Monte Carlo Simulation 

pions shot “centrally” at (φ=0, η=0.45)

proton fraction measured by TRT
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Calibration techniques
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Signal 
definition 

Invisible 
energy
Out of 
cluster

Dead 
material 

Leakage

Classified Cluster
ELAYER = clustered energy

 in LAYERs

Local Hadron Calib. (LH)

Cell en. density,η, Eclus 

Parametrization 

Cluster position

Hadronic and Em energy 
deposits have different 
fluctuation properties

Calibrated clusters
used to form 
calibrated jets

Variables sensitive to 
fluct. to compensate 

and improve resolution 

(See G Pospelov’s talk)

Calibrated layer energies
technically extendable to jets, 

need to calibrate jet itself

Layer Correlation Calib. (LC)

All values from 2 sigma 
Gaussian fit to energy

Corrections   



F Spanò - Pions @ CALOR08

 [GeV]beamE
50 100 150

be
am

/E
fit

<E
>

0.6

0.7

0.8

0.9

1

em-scale
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out-of-cluster
dm

pure π+ beam

EM scale:~75% of Ebeam

Expect linearity recovered within 2% for Ebeam > 20 GeV

±2%

Weighting 
recovers ~10%

Dead Material recovers remaining ~10%

Out of clus: small 
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Local Had Calib Linearity - Simulation

ATLAS Preliminary
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pure π+ beam

Expect improvement by 11% to 40% in relative resolution

Dead material is dominant effect 

ATLAS Preliminary
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Layer Correlation Calibration (LC)
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Signal: clustered energy in LAYERs

Corrections: function of 
linear comb of LAYER energies 

with largest expected fluctuations

Iterate

Space of ELAYER (GeV)

Weight  ELAYER to recover Einv
 include out of clus. corr

EDMLAr-Tile/Etot  

Derive 
from
simulated
samples 
with Ebeam in
(15,230) 
GeV

No Ebeam dep

Dead material estimate

Edep (GeV)

Eprinc fluct (GeV)

+
Eprinc0/Etot

E p
ri

nc
2/

E t
ot

Ereco/Etrue
 dominant visible 

dominant invisible
energy

 for Tile 1st Layer

Eprinc0

E p
ri

nc
1

 param for upstream loss+ leakage
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 (GeV)beamE
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EM scale (MC)

Weighted (MC)

Weighted + LAr--Tile DM correction (MC)

Weighted + all DM corrections (MC)

EM scale (data)

Weighted (data)

Weighted + LAr--Tile DM correction (data)

Weighted + all DM corrections (data)

LC Linearity - Data and Simulation

Data - sim. 
agreement 
is within 2%
at all stages 

Linearity is recovered within 3%
9

consistent π+-p mix in data and simulation

EM scale:~75% of Ebeam

Weighting 
recovers ~12%

LAr-Tile Dead 
material 
accounts for 
~8%

Remaining dead material  adds ~2%

ATLAS Preliminary
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EM scale (data)

Weighted (data)

Weighted + LAr--Tile DM correction (data)

Weighted + all DM corrections (data) Calibration 
improves relative 
resolution by 17% 
to 21% (expect 17 

to 24%)
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Consistent π+-p mix in data and simulation

G4.9 improves resolution description 
(see P.  Speckmayer’s talk)

LC Resolution - Data and Simulation
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Simulation underestimates data 
relative resolution by 10% to 25%

Dead material effects dominate 
with increasing energies

Data-Sim Ratio

ATLAS Preliminary

ATLAS Preliminary
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EM scale taken from LC method: slight difference with LH due to different reco version

Linearity recovered at 2% to 5% level in both

ATLAS Preliminary
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Conclusions
• A simulation-based technique for hadronic signal calibration (LH) 

was applied to pion energy reconstruction in 2004 ATLAS combined 
test beam for Ebeam in (20 GeV, 180 GeV).  A novel technique based 
on layer correlation (LC) was also used.

• Pion linearity is recovered within 2 to 5% by both approaches in 
good agreement between data and simulation.  Weighting and dead 
material effect have similar impact. 

• Relative energy resolution is expected to improve (by 20-30%  to 
40% in LH/LC).  LC actually achieves 17 to 21% improvement. 
Simulation underestimates data resolution by 10 to 25%.  Dead 
material effects are dominant.

• Data-sim. discrepancies at EM scale kept at all stages: simulation 
performance is limiting factor.
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Back-up
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ATLAS Calorimeters @Test beam 04

14

Coverage: 
Phi (-0.15,0.15),Eta(-1.6,1.6)

3 Tilecal iron scintillator  
stacked modules 

I LAr/Lead EM barrel module
with accordion shape

1.3 λint@ η=0.45 

Dead mat: 0.6 λint @ eta=0.45

8.2 λint@ η=0.45 
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Weighting  
performance: 
Average
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 Weighting 
Performance: 

Spread 
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Dead Material  effects in LH

17

(simulation - pion only)



Layer correlation Calibration: more details
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•Derive weight by principal analysis 
technique

•Calorimeter energy layers (sum of topo-
clusters) make an N dimensional vector (E1, ...EN)
• Calculate covariance matrix between layer 
energies and diagonalize it
• Derive Layer Energies Components  (LEC) 
(EEig0,..,EEigN) along new basis of covariance matrix 
eigenvectors

energy 
depositions

eigenvector 
basis

layer 
energy 
basis

•Build weights
•One weight table per layer obtained as 
function of first 2 LECs w(EEig0,EEig1)= 
<Etot,k/Erec,k>  for all events in given bin
•Superpose various fixed energy samples 
to avoid beam energy dependence

Eigenvalue ordered eigenvec: 
first few sensitive to most of 

shower fluctuations

Basic idea: hadronic and em energy deposits. have different fluctuation properties 
Variables sensitive to fluct. can compensate and provide resolution improvement

Table for Tile A sample
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Effect of LC
Calibration

Data/simulation ratios 
are not varying 

significantly from em 
to had scale

LC Calibration does 
not introduce 

distortions sizeable in 
the initial EM 
description.
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Data-Simulation 
Ratios in LC
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LC Eigenvectors
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