Dual-Readout Calorimetry with Crystals

Davide Pinci – INFN Sezione di Roma

On behalf of:

N. Akchurin^a, A. Astwoo^d, A. Cardini^b, G. Ciapetti^c, R. Ferrari^d, S. Franchino^d, M. Fraternali^d, G. Gaudio^d, J. Hauptman^e, F. Lacava^c, L. La Rotonda^f, M. Livan^d, E. Meoni^f, H. Paar^g, A. Policicchio^f, S. Popescu^a, G. Susinno^f, Y. Roh^a, W. Vandelli^h, T. Venturelli^f, C. Voena^c, I. Volobouev^a and R. Wigmans^a

- a Texas Tech University, Lubbock (TX), USA
- ь INFN Sezione di Cagliari, Italy
- c Università di Roma "La Sapienza" and INFN Sezione di Roma, Italy
- d Università di Pavia and INFN Sezione di Pavia, Italy
- e Iowa State University, Ames (IA), USA
- f Università della Calabria and INFN Cosenza, Italy
- g University of California at San Diego, La Jolla (CA), USA
- g Cern, Geneve, Switzerland

Outline

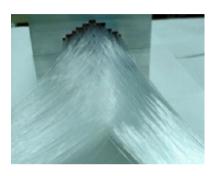
- i. General DRC principle of operation
- ii. The DREAM hadronic calorimeter
- iii. Homogeneous material as dual readout calorimeters: PWO and BGO
 - Test set-up
 - Data analysis
 - Results
- iv. Correlations between PWO/BGO and DREAM
- v. Conclusion and future developments

General DRC equations

- The possibility of evaluating the em component (f) of a hadronic shower would allow to account for one of the main sources of the hadronic calorimeters response fluctuation;
- x Suppose to have a Calorimeter equipped with two sensitive media (for example one sensitive to the Cherenkov light and a one to the Scintillation light) with different e/h;

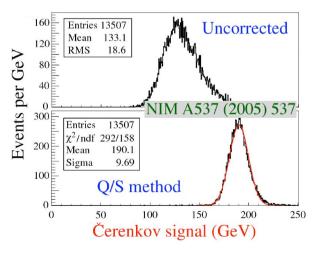
$$C = [f + c(1 - f)] E$$
 where $c = (h/e)_C$
 $S = [f + s(1 - f)] E$ where $s = (h/e)_S$

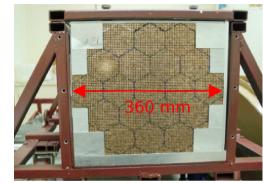
- x It is possible to evaluate $f=rac{c-s(C/S)}{(C/S)(1-s)-(1-c)}$ and $E=rac{S-\lambda C}{1-\lambda}$
- x Where $\lambda = \frac{1-s}{1-c}$ can easily be measured on beam of energy E_0 :

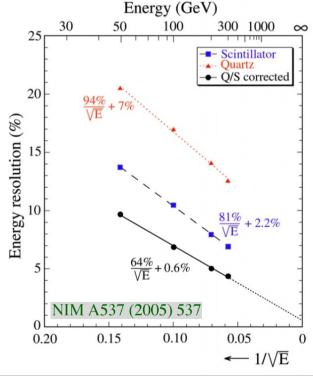

$$\lambda = \frac{E_0 - S}{E_0 - C}$$

x Or it can be extracted from a linear fit of C vs S $S=(1-\lambda)E_0+\lambda C$

The DREAM DRC


x The Dual-REAdout Module (DREAM) scintillating (S) and in quartz (Q) fibers in copper absorber.


x The value of λ is: $\lambda = \frac{1-q}{1-c} = \frac{1-0.77}{1-0.2} \simeq 0.29$



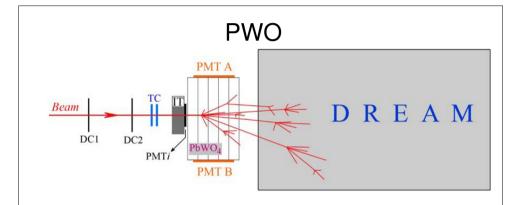
Reduced response non linearities due to the unknown fluctuations of *f*:

Gaussian and symmetric measured Energy distribution

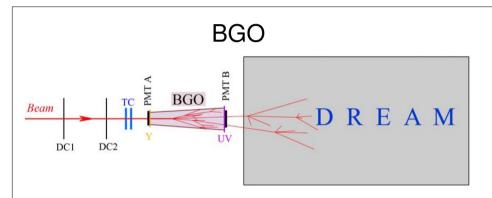
Perfect E^{-1/2} scaling

A homogeneous material?

- x The dominant limitation is the small number of Cherenkov photoelectrons (8 ph.e./GeV), arising from the very small sampling fraction → limited performance on em showers;
- x DRC with a homogeneous material? This will largely increase the number of Cherenkov photoelectrons and improve performances on em showers;
- x Separation of Scintillation and Cherenkov light components can be based on:

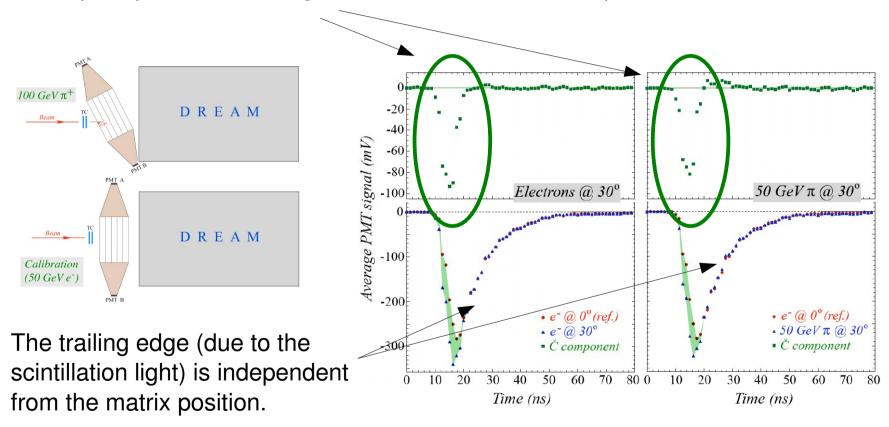

	Cherenkov	Scintillation	
Time response	Prompt	Exponential decay	
Light Spectrum	$\propto 1/\lambda^2$	Peak	
Directionality	Cone: $\cos \theta_c = 1/\beta n$	Isotropic	

x Two different scintillating materials have been tested in on-beam tests carried out at the SPS in 2006 and 2007: PWO and BGO.


Crystal	LightYield % NaI(TI)	Decay Time (ns)	Peak wavel.(nm)	Cutoff wavel.(nm)	Refr. Index	Density (g/cm³)
BGO (20	300	480	320	2.15	7.13
PWO	0.3	10	420	350	2.30	8.28

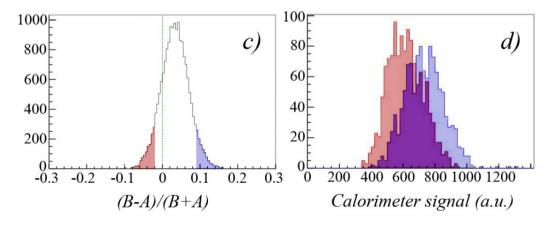
Experimental setup

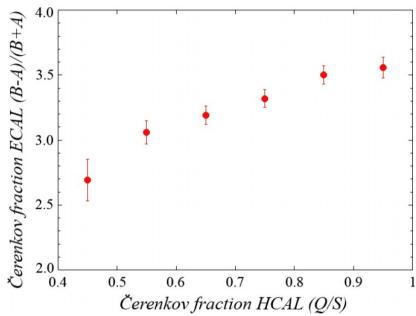
- x The tested calorimeter systems consisted of two sections:
 - x An electromagnetic section (ECAL) made by scintillating crystals
 - An hadronic section (HCAL) made by the DREAM calorimeter


- \times 19 (2.2 x 2.2 x 18 cm²) crystals not optically isolated, orthogonal to the beam 12.4 X_0 ;
- x Readout on the two lateral faces by means of low gain, fast and large sensitive area PMTs (XP4362B);

- x A single tapered 24 cm long crystal (21 X_0) parallel to the beam;
- x Equipped on both faces with an optical filter and a PMT:
 - Yellow filter on the small face;
 - x Ultra-Violet filter on the large face;
- x The PMT signal waveforms were acquired by means of 5 Gsample/s oscilloscope

PWO signal waveforms

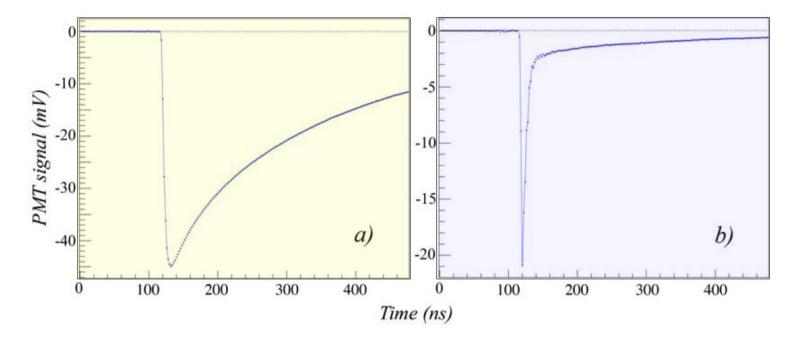

Signal waveforms acquired in different configurations allow to outline the presence of the prompt Cherenkov signals both for electrons and pions.



 \star With the tilted ECAL, the light-asymmetry (B-A)/(B+A) gives a measurement of the Cherenkov light ratio to the total signal which is a measurement of f;

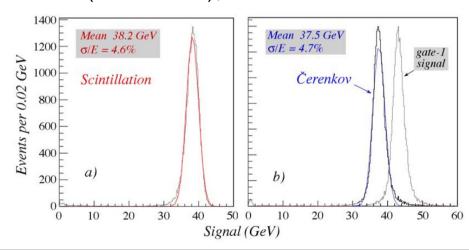
PWO + DREAM

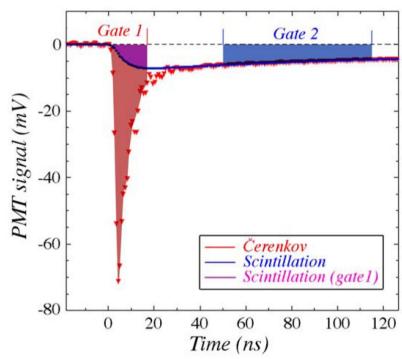
- x EM showers produced late in a hadronic shower will be absorbed in HCAL;
- X Correlation between f measured in ECAL and HCAL
- The Cherenkov component (i.e. f) measured in ECAL (B-A)/(B+A) results to be correlated with the same measurement performed in HCAL (Q/S);
- Signals with different asymmetries measured in ECAL (i.e. different f) have a different total energy distribution in the Calorimeter.



x A PWO-based ECAL is able to give precious information on the em content of the shower and to allow to correct the HCAL response.

BGO signal waveforms

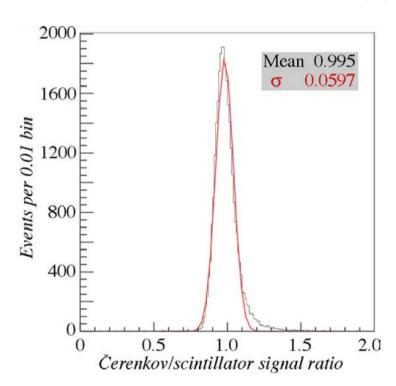

The signal waveforms observed downstream of the two filters placed on the ends of the BGO crystal look very different:



- x The yellow filter is highly transparent to the BGO scintillation light (480 nm), which shows the expected 300 ns decay time;
- The UV filter (250 400 nm) allows the prompt Cherenkov light to pass, attenuating (but not completely cancelling) the slow scintillation component.

BGO: data analysis

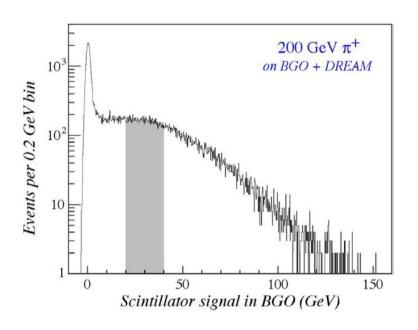
- x In order to extract information about the relative contribution of Cherenkov and Scintillation to the total light yield, the UV PMT signal waveforms have been analysed;
- An off-line integration of the charge Q1 collected in the first 16 ns of the pulse (Gate 1) and Q2 in the interval 50-115 ns (Gate 2) was performed;
- The use of information provided by the Yellow-filter side allowed to evaluate the shape of the scintillation signal and to evaluate its amount to the light in Q1 (15% of Q2);



Once corrected for this effect Q1 and Q2 were calibrated to have C and S with distributions centred around 38 GeV in the run with 50 GeV electron beam (because of the lateral leakages).

BGO: photo-electron number

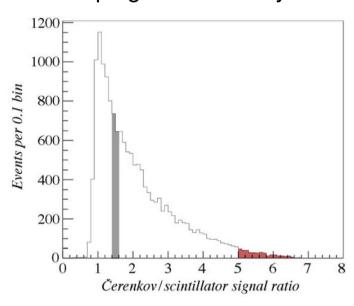
- The fluctuations of C (4.7%) and S (4.6%) depend both on the photo-electron statistics and on fluctuations in the showering process (lateral leakage and longitudinal development);
- x The distribution of the ratio C/S may provide more information on the light yield.

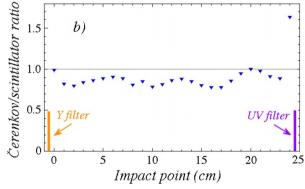

The C/S distribution has a σ /mean ratio of about 6%.

$$\frac{\sigma_{(C/S)}}{C/S} = \frac{\sigma_S}{S} \oplus \frac{\sigma_C}{C} \simeq \sqrt{2} \frac{\sigma_S}{S} = \sqrt{\frac{2}{N_{pe}}}$$

That implies a Cherenkov light yield of, at least, 15 photoelectrons per GeV.

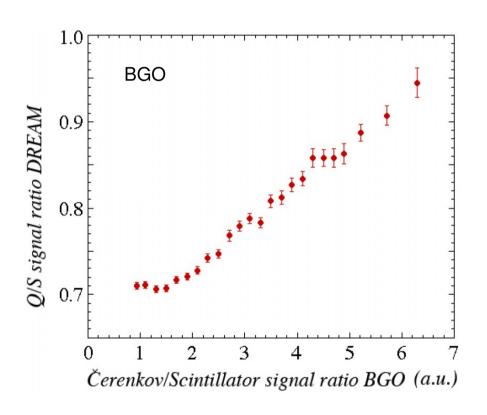
BGO + DREAM: pion runs

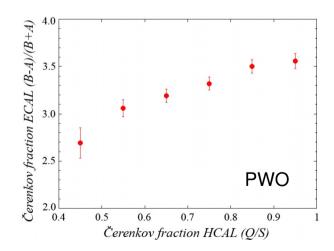

x In order to study the behaviour of the BGO crystal with hadrons, we switched to a 200 GeV π^+ beam;


- x From the analysis of S distribution in ECAL it is clearly visible:
 - A dominant peak containing the 50% of events in which the pion penetrate in the BGO crystal without starting a shower (mip peak) with an Energy released below 10 GeV;
 - A long tail of event with nuclear interactions with energy deposited up to more the 100 GeV;
- For further studies we concentrated on events with an Energy released ranging between 20 and 40 GeV;
- These events represent the 20% of the total and 40% of the non-mip events;

BGO: the ratio C/S

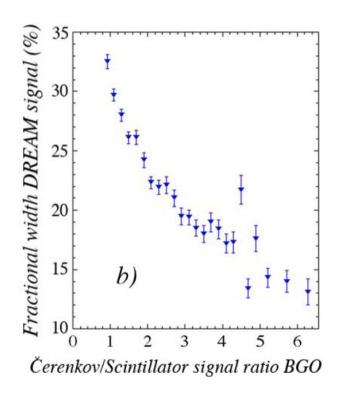
The distribution of the C/S ratio can provide useful informations on the shower developing within the crystal.


- While for electrons the C/S ratio distribution has a narrow gaussian shape (centred around 1.0) for pions it is completely asymmetric and it exhibits a long tail.
- The large excess of Cherenkov light produced in some event can be explained from the analysis of the behaviour of C/S as a function of the beam position in a longitudinal scan;
- x For pions impinging the crystal close to the UV filter the C/S value is a factor 2 above the average;
- x This can be due to Cherenkov light produced by fast particle in the filter itself and/or in the PMT window;

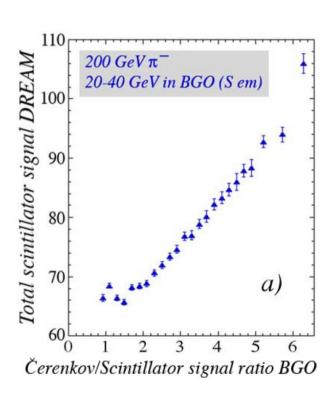

When the em shower has its maximum on the filter/window a large amount of Cherenkov light (but no scintillation light) is produced.

BGO: the ratio C/S

As already found for the PWO one could expect a correlation between the electromagnetic ratio measured in the two sections of the calorimeter system;



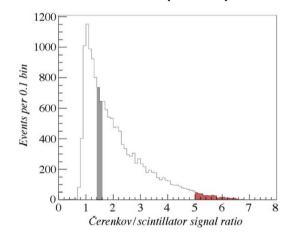
- x A good correlation is found between C/S in BGO-ECAL and Q/S in DREAM-HCAL;
- x The variable C/S in the BGO is able to measure the em component of the shower in the Calorimeter;
- x C/S in the BGO resulted to be more sensitive than (A-B)/(A+B) in the PWO;

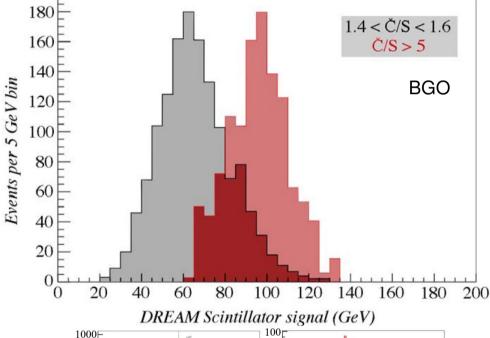


BGO: the ratio C/S

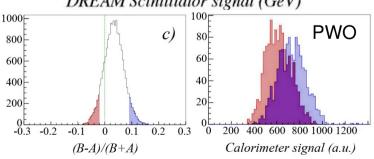
- x The sensitivity of C/S to the shower f is confirmed also by studying the behaviour of the scintillating fibres in DREAM-HCAL;
- x A high value of C/S means a large f that leads to:

x Lower signal fractional fluctuations which are mainly induced (once the f fluctuations are corrected) by uncertainties of the invisible energy of the hadronic component


x a larger Scintillator signal in DREAM-HCAL


BGO: the C/S ratio

x The main results of the analysis are summarised in the plots below;


x By choosing different values of C/S in ECAL it is possible to select different "sub-distributions" in the HCAL-DREAM scintillator response that are narrower than the

global one: DRC principle at work!

x This effect is more visible in the analysis performed on the BGO than in the PWO

Conclusion and future development

- x Separation of Cherenkov and Scintillation components in homogeneous materials is possible;
- This allows to evaluate the electromagnetic fraction of a shower giving the possibility of reducing part of the fluctuations and non-linearities in measuring the Energy released by a hadron;
- x The application of the Dual-Readout method on electromagnetic calorimeters can be exploited to improve the global ECAL+HCAL performance to electron and pion showers;
- x A 100 BGO crystal matrix is being made-up and will be tested as an ECAL, followed by DREAM acting as an HCAL, on the SPS beam this summer.

System calibration

x Both the systems were calibrated by means of a 50 GeV electron beam;

x PWO:

- x In the configuration with the crystal orthogonal to the beam the amount of Cherenkov and Scintillation light reaching the two PMTs are the same;
- Because the ECAL thickness was only 12.4 X₀, a longitudinal leakage is expected. On the basis of an EGS4 simulation it was calculated that on average only 35.8 GeV were deposited in the ECAL;

x BGO:

- x Since the BGO crystal thickness was 21 X_0 , no significant longitudinal leakages are expected.
- x Of course lateral leakages in this case are important and, according to a simulation, 38.2 GeV are contained in the crystal

X DREAM:

x Each single tower was calibrated, taking into account a simulated containment of 93 % (46.3 GeV)