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General DRC equations

X

The possibility of evaluating the em component (f) of a hadronic shower would allow to
account for one of the main sources of the hadronic calorimeters response fluctuation;

Suppose to have a Calorimeter equipped with two sensitive media (for example one
sensitive to the Cherenkov light and a one to the Scintillation light) with different e/h;

C=[f+c(l—f)]FE wherec=(h/e)c
S=[f+s(l—f)]E where s =(h/e)s

. . c—s(C/S) S —\C
It is possible to evaluate [ = and £ =
i = ema—s-a-9 T
1 — s .
Where \ = can easily be measured on beam of energy E:
Ey— S
A= =
E{} — C

Or it can be extracted from a linearfitof Cvs S S = (1 — A\)Ey + AC

(

Davide Pinci — INFN Roma |




The DREAM DRC

x  The Dual-REAdout Module (DREAM) scintillating (S) and in quartz (Q) fibers in copper
absorber.
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A homogeneous material?

The dominant limitation is the small number of Cherenkov photoelectrons (8
ph.e./GeV), arising from the very small sampling fraction — limited performance on
em showers;

DRC with a homogeneous material? This will largely increase the number of
Cherenkov photoelectrons and improve performances on em showers;

Separation of Scintillation and Cherenkov light components can be based on:

Cherenkov

Scintillation

Time response

Prompt

Exponential decay

Light Spectrum

[ 1/A2

Peak

Directionality

Cone: cos 6.=1/pn

Isotropic

x Two different scintillating materials have been tested in on-beam tests carried out at

the SPS in 2006 and 2007: PWO and BGO.

Crystal LightYield | Decay Peak Cutoff Refr. Density
% Nal(Tl) | Time (ns) | wavel.(nm) [ wavel.(nm) [ Index | (g/cm3)

BGO 130 ’4 80 320 2.15 7.13

pwo  (0:3) (10 (420 350 2.30 [(8.28
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Experimental setup

x The tested calorimeter systems consisted of two sections:

x An electromagnetic section (ECAL) made by scintillating crystals

x An hadronic section (HCAL) made by the DREAM calorimeter

x 19 (2.2 x 2.2 x 18 cm?) crystals not
optically isolated, orthogonal to the beam
12.4 X,

x Readout on the two lateral faces by
means of low gain, fast and large
sensitive area PMTs (XP4362B);

BGO

PMT B

BGO

) DREAM

Uv

x A single tapered 24 cm long crystal
(21 X,) parallel to the beam;

x Equipped on both faces with an
optical filter and a PMT:

x Yellow filter on the small face;

x Ultra-Violet filter on the large face;

x The PMT signal waveforms were acquired by means of 5 Gsample/s oscilloscope

(
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PWQO signal waveforms

x Signal waveforms acquired in different configurations allow to outline the presence of
the prompt Cherenkov signals both for electrons and pions.
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from the matrix position.

x With the tilted ECAL, the light-asymmetry (B-A)/(B+A) gives a measurement of the
Cherenkov light ratio to the total signal which is a measurement of f;
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PWO + DREAM

x EM showers produced late in a hadronic shower will be absorbed in HCAL;

x Correlation between f measured in ECAL and HCAL

x  The Cherenkov component (i.e. /)
measured in ECAL (B-A)/(B+A) results to
be correlated with the same measurement
performed in HCAL (Q/S);

x Signals with different asymmetries
measured in ECAL (i.e. different f) have a
different total energy distribution in the

Calorimeter.
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x A PWO-based ECAL is able to give
precious information on the em
content of the shower and to allow to
correct the HCAL response.
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BGO signal waveforms

x The signal waveforms observed downstream of the two filters placed on the ends of

the BGO crystal look very different:
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x The yellow filter is highly transparent to the BGO scintillation light (480 nm), which

shows the expected 300 ns decay time;

x The UV filter (250 — 400 nm) allows the prompt Cherenkov light to pass, attenuating

(but not completely cancelling) the slow scintillation component.
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BGO: data analysis

x In order to extract information about the relative contribution of Cherenkov and
Scintillation to the total light yield, the UV PMT signal waveforms have been analysed;

x An off-line integration of the charge Q1
collected in the first 16 ns of the pulse
(Gate 1) and Q2 in the interval 50-115
ns (Gate 2) was performed;

x The use of information provided by the
Yellow-filter side allowed to evaluate
the shape of the scintillation signal and
to evaluate its amount to the light in
Q1 (15% of Q2);
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Once corrected for this effect Q1 and Q2 were
calibrated to have C and S with distributions
centred around 38 GeV in the run with 50 GeV

electron beam (because of the lateral leakages).
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BGO: photo-electron number

x The fluctuations of C (4.7%) and S (4.6%) depend both on the photo-electron
statistics and on fluctuations in the showering process (lateral leakage and
longitudinal development);

x The distribution of the ratio C/S may provide more information on the light yield.
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That implies a Cherenkov light yield of, at

least, 15 photoelectrons per GeV.
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BGO + DREAM: pion runs

x In order to study the behaviour of the BGO crystal with hadrons, we switched to a
200 GeV 1 beam;

x From the analysis of S distribution in ECAL

K |‘ﬁ' 200 GeV it |t |S Clearly V|S|b|e
103? f on BGO + DREAM

il x A dominant peak containing the 50% of
iy ”‘*’”’”’“"“’*M events in which the pion penetrate in

3 iy the BGO crystal without starting a

i 1 wﬂ'ﬂ | shower (mip peak) with an Energy
L

"

i . | Whuﬂlﬂn ] x A long tail of event with nuclear

o s , oo 1% interactions with energy deposited up to
Scintillator signal in BGO (GeV) more the 100 GeV,

x For further studies we concentrated on events with an Energy released ranging
between 20 and 40 GeV;

Events per 0.2 GeV bin

released below 10 GeV;

[

x These events represent the 20% of the total and 40% of the non-mip events;
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BGO: the ratio C/S

x The distribution of the C/S ratio can provide useful informations on the shower

developing within the crystal.
1200~ x  While for electrons the C/S ratio distribution

has a narrow gaussian shape (centred around
1.0) for pions it is completely asymmetric and

1000 —

- B it exhibits a long tail.
2 600 i :
g x The large excess of Cherenkov light produced
S | in some event can be explained from the
200 analysis of the behaviour of C/S as a function
Nl P of the beam position in a longitudinal scan;
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x For pions impinging the crystal close to the UV filter
the C/S value is a factor 2 above the average;
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x This can be due to Cherenkov light produced by fast o
particle in the filter itself and/or in the PMT window; pisicia st s eyl

Impact point (cm)

x When the em shower has its maximum on the filter/window a large amount of Cherenkov
light (but no scintillation light) is produced.

Cerenkov/scintillator ratio
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BGO: the ratio C/S

x As already found for the PWQO one could expect a correlation between the
electromagnetic ratio measured in the two sections of the calorimeter system;
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X

A good correlation is found between C/S
in BGO-ECAL and Q/S in DREAM-HCAL;

The variable C/S in the BGO is able to
measure the em component of the
shower in the Calorimeter;

C/S in the BGO resulted to be more
sensitive than (A-B)/(A+B) in the PWO;
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BGO: the ratio C/S

x The sensitivity of C/S to the shower f is confirmed also by studying the behaviour of
the scintillating fibres in DREAM-HCAL;

x A high value of C/S means a large f that leads to:
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BGO: the C/S ratio

X The main results of the analysis are summarised in the plots below;

x By choosing different values of C/S in ECAL it is possible to select different “sub-
distributions” in the HCAL-DREAM scintillator response that are narrower than the

global one: DRC principle at work! 180
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Conclusion and future development

x Separation of Cherenkov and Scintillation components in homogeneous
materials is possible;

x This allows to evaluate the electromagnetic fraction of a shower giving the
possibility of reducing part of the fluctuations and non-linearities in
measuring the Energy released by a hadron;

x The application of the Dual-Readout method on electromagnetic
calorimeters can be exploited to improve the global ECAL+HCAL
performance to electron and pion showers;

x A 100 BGO crystal matrix is being made-up and will be tested as an ECAL,
followed by DREAM acting as an HCAL, on the SPS beam this summer .

(
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System calibration

x Both the systems were calibrated by means of a 50 GeV electron beam;
x PWO:

x In the configuration with the crystal orthogonal to the beam the amount of
Cherenkov and Scintillation light reaching the two PMTs are the same;

x Because the ECAL thickness was only 12.4 X , a longitudinal leakage is

expected. On the basis of an EGS4 simulation it was calculated that on average
only 35.8 GeV were deposited in the ECAL;

x BGO:

x Since the BGO crystal thickness was 21 X , no significant longitudinal leakages
are expected.

x Of course lateral leakages in this case are important and, according to a
simulation, 38.2 GeV are contained in the crystal

x  DREAM:

x Each single tower was calibrated, taking into account a simulated containment of
93 % (46.3 GeV)
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