

Response of the CALICE Si-W ECAL prototype to electrons

Djamel BOUMEDIENE – LPC Clermont on behalf of the CALICE Collaboration

XIII International Conference on Calorimetry in High Energy Physics Pavia, Italy

- Introduction
- Electron selection
- Uniformity of the response of the ECAL
- Performance (resolution, linearity)
- Longitudinal and transverse shower development
- Conclusion and outlook

ECAL Prototype

Wafers Si with 6×6 pads (10×10 mm²)

A high granularity calorimeter optimized for *Particle Flow* for ILC physics

- **Absorber :** tungsten
- Active element : silicon
- High sampling : 30 layers
- High granularity : 1x1 cm² cells
- Compact : ~ 20 cm depth for 24 X0
- Channels : 6471 (2006)

Test Beam campaign of CALICE at CERN

Si-W HCAL Tail Catcher ECAL

AIM

Validate the Si-W technology

Characterisation of the prototype

- Response in energy (resolution, linearity)
- Spatial resolution
- Response uniformity

Beam (e⁻ or π)

CALOR 08 Pavia June 2008

Event selection

•
$$E_{\text{raw}} = \sum_{i=0}^{i=9} E_i + 2\sum_{i=10}^{i=19} E_i + 3\sum_{i=20}^{i=29} E_i$$

- **Energy window :** $125 < E_{RAW} / E_{beam} < 375$: μ and π rejection
- **Cut on Čerenkov counter :** π rejection
- Beam halo rejection

CALOR 08 Pavia June 2008

Control of the uniformity response

CALOR 08 Pavia June 2008

Control of the uniformity response

Djamel BOUMEDIENE, CALICE collaboration

CALOR 08 Pavia June 2008

Measurement of the energy gaps

• Simple and robust model

$$f(\bar{x}, \bar{y}) = \left(1 - a_x e^{-\frac{(\bar{x} - x_{gap})^2}{2\sigma_x^2}}\right) \left(1 - a_y e^{-\frac{(\bar{y} - y_{gap})^2}{2\sigma_y^2}}\right)$$

- Function of the shower barycenter only
 - \rightarrow works both for photons and electrons

Correction of the energy gaps

Correction of the energy gaps

Correction for the energy loss in the inter-wafer gap improves the shape of energy distribution

Energy reconstruction

 $\frac{\Delta E}{E} = \frac{0.12}{E} \oplus 0.1\% \rightarrow \text{determined by the observed momentum spread}$

Used data – CERN 2006

Data sample used to characterise the prototype

Energy (GeV)	particle	date	statistics (kevts)
6	e ⁻ , e ⁺	Oct	10.6
10	e ⁻ , e ⁺	Aug, Oct	55.9
12	e ⁻ , e ⁺	Oct	32.1
15	e ⁻ , e ⁺	Aug, Oct	60.4
20	e ⁻ , e ⁺	Aug, Oct	76.9
30	e ⁻ , e ⁺	Aug, Oct	43
40	e ⁻	Aug	27
45	e-	Aug	129.3

Sample size after the full selection <

CALOR 08 Pavia June 2008

Reconstructed energy

Mean and width extracted using a Gaussian fit $[-1\sigma, +2\sigma]$

Linearity of the response

The prototype is linear at 1% level

•
$$E_{meas} = (E_{raw} - \alpha) / \beta$$

- $\alpha = -97 \text{ MIP}$
- $\beta = 266 \text{ MIP/GeV}$

Energy resolution

Illustration of the spatial resolution

Spatial resolution

• Linear fit:
$$\chi^2 = \sum_{i,j} (x_{meas} - x_{th})_i W_{ij} (x_{meas} - x_{th})_j$$

 $x_{th} = p_{0x} + p_{1x} \times z$ $x_{meas} = \frac{\sum_{i} E_i x_i}{\sum_{i} E_i}$

i = hits in layer L.

- Error matrices extracted from the simulation (per energy)
 - ➤ x and y uncorrelated
 - ▶ two error matrices W_{ij}
 - two independent fits
- Minimize χ^2 with respect of p_{0x} , p_{1x}

Spatial resolution

Longitudinal shower development

Longitudinal shower development

Longitudinal shower development

Radial development of the shower

Conclusion and outlook

- The Si-W ECAL prototype operated successfully in 2006 at CERN and DESY
- The characterisation of the ECAL was performed with 6471 operating cells (99.86 % operating cells)
- The study of the 2007 data with an up scaled version of the ECAL (up to 9400 channels) is ongoing
- More data are being taken at Fermilab (2008)