A Digital Hadronic Calorimeter with a new readout generation

CIEMAT, IHEP, IPNL, LAL, LAPP, LLR

I. Laktineh IPN-Lyon

OUTLINE

- Motivation for ILC-like DHCAL
- Detectors
- 4-chip project
- 1 m² project
- Perspectives

Motivations

Analog and Digital HCAL studies are followed within the CALICE collaboration in order to choose the best heal for future ILC experiments.

Why the digital solution?

Going from analog readout to 1:2-bit readout electronics:

- One can increase detector granularity and hence PFA performance while reducing cost.
- Cheap, robust detectors suitable for the digital version exist and are very attractive: GRPC, µMEGAS, GEM...

Does the digital option mean energy measurement degradation?

- 1-bit digital solution is better at low energy
- Analog solution is favored at high energy due to high number of particles in the central region.

But what about the readout with 2 bits solution?

The study of KEK group for the GLD HCAL using: 2-bit, 3 thresholds (.5, 10, 100 MIPs) associated to 1×1 cm² tile size shows:

Similar energy resolution with respect to the analog readout version for single particle at HE

Comparison of Energy Resolutions

$$\frac{\sigma}{E} = \sqrt{\frac{\sigma_{\text{stochastic}}^2}{E} + \sigma_{\text{constant}}^2}$$

• Analog :
$$\sigma_{sto} = 48.9 \pm 0.6 \%$$

 $\sigma_{con} = 5.0 \pm 0.2\%$

- Digital : $\sigma_{\text{sto}} = 37.0 \pm 0.9\%$ $\sigma_{\text{con}} = 13.8 \pm 0.2\%$
- Semi : $\sigma_{\text{sto}} = 45.1 \pm 0.6\%$ $\sigma_{\text{con}} = 6.8 \pm 0.1\%$
- Real data (analog) :

$$\sigma_{\text{sto}} = 46.7 \pm 0.6\%$$
 $\sigma_{\text{con}} = 0.9 \pm 0.9\%$
NIM A 487 (2002) 291

- 1-bit digital solution is better at low energy
- Analog solution is favored at high energy due to number of particles in the central region.

But what about the 2-bit readout solution?
The study of KEK group for the GLD HCAL using:
2-bit, 3 thresholds (0.5, 10,100 MIPs) associated to
1×1 cm² tile size shows:

- Similar energy resolution with respect to the analog readout version for single particle at HE
- Better energy resolution for JETs

Jet Energy Resolution

- $e^+e^- \rightarrow qq (u/d/s)$
 - $\sqrt{s} = 91, 350, 500 \text{ GeV}$
- 4 Energy measurement with (perfect) PFA
- In case of 1×1 cm² tile size, digital calorimeter achieved similar or slightly better jet energy resolution

Jet Energy Resolution

Digital HAdronic CALorimeter for ILC

Two efforts are followed in parallel to have high- granularity compact DHCAL:

USA: using GRPC/GEM with binary readout (1 bit) → Physics Prototype

Europe: using GRPC/MICROMEGAS with semi-digital readout and ILC-like features → Technological Prototype with the following guideline:

•DHCAL as compact and as hermetic as possible

Detectors for the DHCAL

Gas detectors:

Thickness of few millimeters GRPC:

Robust but limited detection rate µMEGAS,GEM:

delicate but high rate

-IPNL 10

Detector dimensions:

GRPC: 8×8, 32×8, 50×32, 100×32, 100×100 1cm²-pad : already produced and tested.

μMEGAS: 16×6, 32×8,32×12 1cm² produced and tested. Larger size detectors are under development 30 May Calor08 I.Lak

The challenge:

How to have a detector of few thousands m² fully equipped with low consumption semi-digital readout and still very compact !!!!?

Embedded Daisy-chained electronics is the solution

4-Chip project

Aim: Validate the new electronics/acquisition scheme for DHCAL

- •8×32 pads detector (GRPC and µMEGAS)
- •8-layer PCB
- •4 chips (64 ch)
- •Readout USB + FPGA

Electronics

HARDROC

- 64 channels, 16mm²
- Digital/analog output.
- 2 thresholds(3 very soon)
- low consumption, power pulsing (< 10 μW/ch)
- Digital memory able to store up to 128 evts.
- Large gain range
- Xtalk < 2%
- Adequate for GRPC* (threshold > 10 fc)

*For µMEGAS another ASIC is developed in Lyon with a threshold as low as 3 fc

HARDROC: Scurves of 64 channels

•8-layer PCB, 800 µ thick

• 8×32 pads of 1 cm² and 500 μ separation

30 May Calor08

I.Laktineh-IPN

Readout system

The 4 chips are daisy-chained and connected to a FPGA communicating with a pc through a USB device.

Firmware + Software were developed to allow charging the slow control parameters from file/flux and controlling the procedure.

Acquisition modes: different modes are allowed:

- a) Internal triggers
- b) External triggers: cosmics & test beam
 Data output: The two kinds of data output of the hardroc
 chips are accessible: digital and analog

* Two thresholds

* Gain value of each channel can be chosen in [0-63]

•Calibration is done automatically for all channels by injecting charge through internal capacitors

Slice test

On the test bench with GRPC

Second threshold

First threshold

First results

TFE 93% Isobutene 5% 5F6 2%

Threshold ≈ 100 fc

30 May Calor

GRPC

32×8 pads

RP:licron

Analog readout was recently integrated and will be used to chose the thresholds adequately

Amplitude of the signal injected in one of the 64 channels of each of the 4 ASICs through internal capacitors

Beam test

Final confirmation of the success of our electronic readout system will be coming soon with the beam tests with 5 fully equipped detectors (32×8 pads each):

10-17 July: beam test@ps-cern 3-11 August: beam test@sps-cern

To study:

* Efficiency and multiplicity vs:angle, position, particle multiplicity

* but also the first phase of the Hadronic shower

DIF is already designed and sent to fabrication

ASU hosting 24 hardroc chips is already designed

Connection between the different ASU is under study: signal transmission+ mechanics (IPNL+CIEMAT)

Perspectives

A technological prototype ILC-module0 to be built before 2010

The technological prototype optimization is going on to optimize the design

Conclusions

A digital hadronic calorimeter with semi-digital readout is very promising candidate for future colliders experiments

A slice test based on the semi-digital readout was successfully tested in a laboratory cosmic bench

A beam test is scheduled next months at CERN.

1 m² project is ongoing and the first plane is expected before the end of 2008.

A technological prototype is funded and expected in 2009-2010

Back up

Energy Resolution

Segmentation dependence

→ Smaller size is better in high energy region

Threshold dependence

→ No significant difference

HARDROC Power pulsing

PWR ON: ILC like (1ms,199ms)

New chip

A new chip with a low threshold for μ MEGAS is under development @IPNL

3 DACs (8 bits each)
BCID = 12 bits
memory depth= 8 ev.

64-ch chip CMOS tech power pulsed

Simple geometry

30 May Calor08

The chip was designed and produced.

A test board using OPERA DAQ
developed @IPNL was used.

First results:
Mode µMEGAS
0.8 fc/DAQ
Resolution < 2.5 fc

Tests and improvement are going on IPNL 39