

The LHCb Electromagnetic calorimeter: calibration & monitoring

Irina Machikhiliyan

ITEP (Moscow) / CERN

on behalf of the LHCb Collaboration

Operational environment

- ECAL is a part of Calorimeter System, which includes also Scintillator Pad Detector (SPD), Preshower detector (PS) and Hadron Calorimeter (HCAL).
- ECAL goals:
 - Pre-selection of events containing B-decays: identification of energetic electrons, photons and neutral pions (L0 trigger);
 - Reconstruction of precise kinematical parameters of neutral particles;
 - Participation in PID;

Design requirements:

- Energy resolution: on the level of $10\%/\sqrt{E} \oplus 1\%$;
- Transverse segmentation: small enough to separate two showers from π° decays and to minimize pile-up;
- <u>Response time</u>: compatible with LHC bunch spacing 25ns;
- <u>Maximal radiation dose</u>: 2.5 kGy / year;
- <u>Z-position from i.p</u>.: 12.5 m;
- Lateral size: 7.8 m x 6.3 m;

General features

- Modular wall-like structure;
- Two independently retractable halves;
- Three sections (Inner, Middle and Outer) of different granularities;
- Detector media: sampling absorberscintillator structure;
- Light collection system: WLS fibers;
 - Light readout device: photomultiplier (PM) HAMAMATSU R7899-20;
- Front-End electronics: 'dead time'-less shaping and integration of PM response at 40 MHz rate;
 - LED based Monitoring System;
 - ECAL dynamic range: follows 'transverse energy' rule: E(max)=7 + 10 /sin(θ).

ECAL module

Test e-beam performance studies:

Energy resolution:

- Inner module: (8.2±0.4)%/√E ⊕ (0.87±0.07)%
- Outer module: (9.4±0.2)%/√E ⊕ (0.83±0.02)%
- Non-uniformity of light collection over Sc tile: better than ±1% (50GeV electrons scan);
- Equivalent energy deposition of the MIP: 0.33 GeV;

Pre-installation measurements with cosmic particles:

	Inner	Middle	Outer
<light yield=""> per cell, Np.e./GeV</light>	3100	3500	2600
Response on MIP, cell-to-cell variation, %	8%	5.3%	6.7%

Front-End Board

- Signal processing:
 - Shaper integrator + 12-bit (80 pC) 40 MHz two-stage bipolar flash ADC
 + delay chip to compensate for different arrival times of PM signals;
 - pedestal subtraction (suppression of low-frequency noise);
 - conversion to 8-bit Et calibrated signal;
- Selection of cluster candidate with highest Et for L0;
- Formatting of data block and dispatch it to the DAQ (upon request);

Time alignment for physical data taking

- PM power supply: clipping chain to cancel signal tail and thus to minimize pipe-up from previous BX;
- Resulting PM output pulse duration is comparable with LHC bunch spacing -> <u>fine time alignment becomes</u> <u>extremely important;</u>

PM anode current pulse

Pulse after clipping chain

Time alignment for physical data taking (cont)

Two major factors contribute in the relative timing of PM output pulse depending on cell position:

- PM transit time ~ 1/√HV ;
- Particles time of flight;

Black: net relative delay

Irina.Machikhiliyan@cern.ch

Time alignment for physical data taking (cont)

Example dependence of PM response to LED on relative ADC gate delay, PM gain 1K

- Expected cell-to-cell difference: well compatible with ADC flat-top;
- The moment the first beam will be available:
 - start with general ECAL synchronization with accelerator cycle as well as other sub-detectors;
 - then go on with fine tuning of relative timing on the level of individual cells;
- Dedicated tools: special timealignment events (TAE) in order to read out several consecutive BX around the one under interest;

Monitoring system

Major goals:

- trace readout chain stability;
- check readout channels serviceability;
- One LED serves a group of channels (9 in the Inner, 16 in the Middle/Outer sections);
- LED light is transported to PMs via long clear fibers arranged in bundles (2÷8 m length);
- Adjustable delaying of individual LED fire pulse is in the range 0÷300 ns, the step is 1ns;
- LED intensity is controllable spanning the noticeable part of the ADC dynamic range;
- Stability of LEDs themselves is traced by PIN photodiodes (one PIN per group of four or two LEDs);

Precise monitoring of LED stability with a help of PIN diode

LEDs stability as measured by PINs: better than 0.5% for 2 days (on the basis of 4 LEDs)

Correction of emulated LED drift by PIN (one PM):

- Black dots: original readings
- Red squares: corrected readings

Accuracy of the correction is better than 1% up to 30% change in LED magnitude

0

Monitoring by LEDs: general strategy

Calor 2008, 26-30 May 2008, Pavia

Global LHCb commissioning on cosmics

- Goals:
 - Commissioning of the detector including trigger and DAQ chains;
 - Mutual time alignment of (some) LHCb subsystems;
 - Time inter-alignment inside sub-detectors;
- TAE sequences ±7 BX around the one under interest;
- ECAL participates in the CALO trigger, based on coincidence between ECAL and HCAL;
- ECAL PMs gain is set to 300K (far above the nominal range);

One cosmic track as seen by ECAL (black) and HCAL (red)

Absolute calibration algorithms: resolved π°

Advantage:

- Copiously produced in ppinteractions;
- Minimal info from other subsystems;
- No sophisticated cuts, good S/B ratio;

Disadvantage:

- 2.5 X0 lead converter in front of ECAL (in-between SPD/PS):
 - PS data has to be used: either for full reconstruction of shower energy or for selection of γ's which did not interact in the lead wall;
 - In the last case: significant statistics loss;
 - ECAL should be calibrated already at the level of ~10÷15%;

Absolute calibration algorithms: MIPs

Advantage:

- Copiously produced in ppinteractions;
- Easy to reconstruct;
- Relies only on energy deposition in individual cell

 influence of the rest of ECAL cells is minimal

Disadvantage:

- Requires (minimal) participation of another subsystem: HCAL, tracker or both;
- Very small signal -> low precision (3% at best)

Absolute calibration algorithms: electrons

Advantage:

 High precision of the method (~0.5%);

Disadvantage:

- Requires full detector operational;
- Careful selection of candidates (effects of material in front);

The LHCb Electromagnetic calorimeter

All sub-components are installed in the experimental hall and commissioned;

• For now:

- studying the behavior of ECAL as whole system;
- developing and testing of software for monitoring, time alignment, calibration;

participating in global LHCb commissioning and

waiting for first collisions!

SPARE SLIDES

Irina.Machikhiliyan@cern.ch

Construction of the module

Absorber: Lead;

- Scintillator: BASF-165H based plastic + 2.5% p-terphenyl + 0.01% POPOP;
- Volume ratio Pb:Sc 2:4;

Moliere radius: 3.5 cm;

- Transverse size 12.12 x 12.12 cm²;
- WLS fibers: Y-11(250) MSJ (KURARAY);

	Inner	Middle	Outer
# cells/module	9	4	1
<pre># fibers/module (WLS+clear)</pre>	72+9	72+4	32+1
<light yield="">, Np.e./GeV</light>	3077	3516	2569
Calor 2008, 26-30 May 2008, Pavia			Irina.Machikhiliyan@cern.ch

Expected radiation environment

Radiation dose in the LHCb ECAL

Longitudinal dose in the LHCb ECAL

Behavior of module components under irradiation

Monitoring system time alignment

Timing of PM response on LED can differ up to 2÷3 BX; Shared segment of physical and monitoring signal paths: timing is adjusted by FEBsystem and fixed by the requirement of an optimal PM response on particles;

The rest of monitoring signal path: PM responses on LEDs are synchronized by adjustable delaying of LED fire pulse (the range 0÷300 ns and the step 1ns);

Strategy with the beam:

- Achieve good time alignment;
- Perform absolute calibration:
 - Rough calibration / check of initial settings correctness on the level of whole detector. Different energy flow / occupancy methods are under consideration. Expected accuracy ~15%, details depend on LHC start-up scenario (beam energy, magnetic field presence, etc)
 - 2. Fine absolute calibration on the level of individual cells response (π° , MIP, E/P)
 - In-between of absolute calibration runs monitor stability of channels with LEDs. In case of drift provide correction factors to calibration constants (relative calibration);

Time alignment by physical data (MC studies)

Y. Amhis and J. Lefrancois

The expected shape of the integrated signal (electrons p = 100GeV)

Calor 2008, 26-30 May 2008, Pavia

HX

Irina.Machikhiliyan@cern.ch

Time alignment by physical data-II (MC studies)

Y. Amhis and J. Lefrancois

■ Fit the linear region 10< dT0<18 ns

R = -0.149 dT0 + 2.06

- So obtain:
 - a relation between the ratio R and the distance to the maximum of the integrated signal where the sampling will be done.
- → R(dT0=13ns) = 0.125
- → R(dT0=14ns)=-0.02

