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ATLAS Status in the cavern

Full LAr Calorimeter one of the first
in the ATLAS cavern (2005-2006)

 ATLAS is closed in the final position and ready to take data

 LAr Calorimeter was ready in situ for commissioning in summer 2006

Toroid magnets (2004-2005)
Inner detector (2007-2008)

Muon spectrometer (2006-2008) Tile Calorimeter (2005-2006)
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Liquid Argon Calorimeter

 See Henric Wilkens’ presentation

 ATLAS LAr Calorimeter is a sampling calorimeter:
  Good pseudorapidity coverage  ( |η| < 4.9 )

 LAr Electromagnetic Calorimeter (EMC), |η|<3.2

 Hadronic End-Caps (HEC), 1.5 <|η|<3.2 (2 wheels per End-Cap)

 Forward Calorimeter (FCal), 3.2< |η| < 4.9 (3 wheels per End-Cap)

 High granularity ~190k readout channels in total (90 % is EM calorimeter)

EM End-Cap HECEM Barrel FCal
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Liquid Argon electromagnetic Calorimeter

 Full azimuthal coverage due to accordion geometry

 Longitudinal segmentation: three compartments
 presampler (S0)

 front (S1) (~ 4 X0)

 middle (S2) (~ 16 X0)

 back (S3) (2-12 X0)

 Transversal segmentation:

 η direction, S1 (0.025/8-0.025), S2 (0.025), S3 (0.05)

 One Barrel ( |η| < 1.475 ), Two End-Caps (1.375 < |η| < 3.2 )

 φ direction, S1 (0.1), S2 (0.025), S3 (0.025)

Cu/kapton electrode

Honeycomb spacer

Steel-clad
Pb absorber plates

 ~170k channels in EM calorimeter with very demanding requirements
 Test beam check EM performance (on few % of EM coverage)

 Commissioning needed for good performance at LHC start
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Physics signal for the EM Calorimeter

 Need to know signal shape and the autocorrelation matrix for every cell

FEB output signal after bi-polar shaping.
Sampled every 25 ns (Si) by SCA

Front end Board (FEB)Detector cell

Triangular ionization signal in the LAr cell

  The Optimal Filtering (OF): signal maximum amplitude (Amax), temporal position (Δt)

OF coefficients (OFC), ai and bi , are calculated from the signal shape
with the condition to minimize the noise (including pile-up)

Default value for n in physics mode is 5 samples

Amax

Δt

   
  A

time (ns)
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Calibration chain

  Monitoring ∼170k cells requires:

  A dedicated calibration system

 Send “physics like” signal and use  the physics read out

 Regular calibration runs like in LHC running period:

 “Pedestal” (P): noise and autocorrelation matrix for OFC computation

 “Ramp” (g): compute electronic gain/cell

 “Delay”, cell response to a calibration signal shape  physics signal shape  OFC
 A calibration board injects a signal similar to the ionization signal in steps of ns for each cell

  Energy per cell is calculated as:

Calibration signal
Physics signal

Mcali

Mphys
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Reconstruction in EM Calorimeter

L0

R0

r0

  RTM Method
          “Factorization of the readout response”

The readout response of each cell is probed by the calibration
pulses, and directly transferred to the physics pulse prediction

 This method was successfully used in 2004
Test beam and is the default in the commissioning

 Uses measured parameters where possible

 A few parameters (Tshaper, Zs) are left free to vary in
order to match the measured calibration pulse response
thus absorbing residual effects absent in the model

 FPP Method
          "Analytical model of the readout response"

 The cell and pulse parameters (fstep,Tcali, rC, LC) are
completely obtained from the calibration pulses

  The only additional parameter required it Tdrift (now from
calculation, can be refined when enough data is collected)

 Currently, available only in the barrel
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Commissioning with cosmic muon signals

 Cosmics are the first physics data before LHC start

  Trigger configuration for cosmic muons:
 Dedicated trigger with Tile towers, Δη x Δφ = 0.1 x 0.1

 Recently, other triggers (e.g.  LVL1 Calo)

 Special data taking weeks since 2006, ~ few 106 events

 (results presented with Tile Trigger )

   What can we do with cosmic muons?
1. Cosmic muons  bremsstrahlung photons  EM shower

 Select only high energy deposit, E>500 MeV (1% of the statistic)

 Check the quality of the predicted signal reconstruction

2. Cosmic muons as Minimum Ionizing Particles (MIP)

 Small and non projective signal requires special attention

 Check the EM performance (uniformity and timing)

EBC
LBC

LBA EBA

EBC
LBC

LBA
EBA

µ top

bottom
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Studies with high energy muons (1)

  Prediction of physics pulses using RTM method (default for commissioning)
Good agreement for first samples for |η|<3.2

 Good description of the undershoot but its end (negligible effect on the peak energy  in LHC 5 samples will be used)

EM Barrel, S2 EM End-cap, S2

 Very good understanding of the pulse (low systematic from the signal reconstruction)

Displacement of the readout electrode
in between the absorbers
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Studies with high energy muons (2)

due to the gaussian noise fluctuation

reflect the quality of the prediction

  First in situ study over the complete EM calorimeter coverage
 Only solution for EMEC: select high energetic cells (non projective muons)

 Quantitative comparison of data and predicted pulse

 Coherence of the signal reconstruction quality in complete EM calorimeter coverage

MIDDLE

E>1.5 GeV
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High energy pulses in FCal and HEC

  Signal reconstruction less crucial than for EM

  Cosmic signal in the HEC
 One example of the prediction quality for the pulse shape

  Cosmic signal in the FCal

 Good agreement between

the cosmic shape and the predicted

physic shape extracted from the
Test Beam results
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Studies with MIP cosmic muons (1)

  Need to consider all cells
 Problematic channels (calibration system and cosmic analysis):

 Dead channels for physics (0.013 %)

 Channels without calibration signal, good for physics (0.05%)

 Mandatory for “small” muon signal

 Reduce noise by increasing the number of samples uses for the signal reconstruction

Projectivity: muon goes through nominal Interaction Point (IP)

 Trajectory is extracted by fitting with a

      straight line the position of Tile cells

 Cut on the y=0 plane muon crossing point
(ΔX0, ΔZ0) < (30 cm, 30 cm)

 Allow to extract pure “projective” muon sample

S/B ~ 5

S/B ~ 12

Tile

EM
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Studies with MIP cosmic muons (2)

  Cosmic muons are minimum ionizing particles (MIPs) …
 Weakly depend on input muon energy
 Path length variation is “small” with projectivity cut

  … that should follow a Landau Distribution

 Agrees with the simulation to within 3% for typical cosmic energy depositions
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Studies with MIP cosmic muons (3)

  Linear correlation between EM and Tile Time
 Tile time is measured in each cell, and extrapolated to Y=0 plane
(considering time of flight)

 It is used to correct the timing of each readout FEB

  The dependence of the timing (TEM-TTile)
       resolution with energy

 Data points fitted using

 Agreement with the EM TB results for the  “Res” term  (TB 1420 MeV. ns)

 Not possible extract information about “const” term for EM  (TB 0.65 ns)

      due to the larger Tile timing resolution and bad timing between tile towers

 Encouraging results for the LHC start
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Conclusions

 ATLAS is now complete and commissioning all detectors
 LAr detectors were one of the first to start (2006)

  Despite the small and mostly non-projective signals,
      cosmic muons provide a first in situ test of LAr detectors :

 Electronic chain is well understood
 Coherent results in |η|<3.2

 MIP muons extracted and successfully compared with simulation

  Gives confidence that LAr detectors will be fully operational when LHC data will come
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SPARES
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Physics requirements for the EM Calorimeter

 Requirements for the EM Calorimeter

 Energy resolution:


σE/E = a /√E ⊕ c ⊕ n/E

 “sampling term”: a<10%√GeV;

 “constant term” :  c<0.7%

 “noise term” : n<50 MeV /cell)

 Angular resolution: 50 mrad/√E

 Temporal resolution: 0.1 ns
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Properties of the EM Calorimeter

 Different between EM Barrel and End-cap calorimeter

1200 to 6001400 to 1900C:  S2 cell capacitance (pF)

50 to 2025 to 35L:  S2 cell inductance (nH)

2500 to 10002000High Voltage (V)

30 to 1425 to 28Sampling fraction (%)

600 to 200470Drift time tdrift(ns)

60 to 12070 to 90Folding angle (º)

3.1 to 0.92.1Gap (absorbent - electrode) (mm)

End-caps ( outer wheel )Barrel
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Studies with high energy muons

  Can be used to tune the Tdrift values when enough 32-samples data will be available

Readout electrode is off-
centred by a fraction x

 Negligible impact on energy measurement

flat
bending

Ι

t (ns)

Check with data


