

Semiconductor sensors for the CALICE SiW EMC and Study of the Cross-talk between Guard Rings and Pixels in the CALICE SiW Prototype

-Silicon-Tungsten ECAL prototype
-Calibration & performance on test bench/beam
-Sensor behavior and design
-Crosstalk within sensors
-Summary and conclusion

Rémi CORNAT

LLR (CNRS/IN2P3) Rémi CORNAT (IN2P: On Behalf of the CALICE Collaboration

XIII International Conference on Calorimetry in High Energy Physics, Pavia, Italy, 26-30 May 2008

Running prototype of the CAL

Rémi CORNAT (IN2P3/LLR) - 13th Conference on Calorimetry in HEP - Pavia, Italy

Tests of the prototype

2 complementary approaches

Test bench for individual components and (Cosmic rays)

Test beam for the whole detector DESY and CERN 2006, 2007

DESY (1 to 6 GeV) and CERN (6 to 50 GeV) in 2006 Various angle form beam studied 100M event collected (e, pi, mu)

1 goal : have a realistic detector with characteristics close to what obtained in simulation and near expectations S/N = 10 bits

1 achievement : a lot of issues overcame to get this

Module validation on test bench

Cosmic ray calibration tests bench

Fits give calibration constants on a channel per channel basis

Stand alone electronics

S/N = 9 (0.1 MIP) Dynamic range of 15 bits (multiple gains) Non linearity of 0.36% (high gain) Electronics crosstalk less than 0.1% Power is only 4 mW/channel (target is 100 uW)

Sensors intimacy

Find a low cost but effective sensor

some problems about gluing : chemical incompatibility with passivation, new passivation used

Why ? 3000 m2 to be produced !

6x6 cm2

How ? Smallest number of fabrication steps
PIN diodes with floating guardrings
Easy to integrate : gluing

- Validate sensor processing prior to gluing
- 3 production batches (2005-2007)
 - Russian (Moscow State University)
 - Czech (Institute of Physics)
 - Korean
- 6x6 pads, 525 um thick, 200V bias

Crosstalk issue : see 2nd part of this talk

• MIP = 42000 electrons

Low leakage current (<10 nA/cm2)
Full depletion for maximum energy deposition
Stable in time and for gluing

Yield : ~55% ok

Test beam results

- Calibration constants
- Stability in time and temperature
- Uniformity
- Crosstalk between pixels

MIP Uniformity

Rémi CORNAT (IN2P3/LLR) - 13th Conference on Calorimetry in HEP - Pavia, Italy

Pedestal

Residual pedestal (test bench): •Mean: -0.03±0.01 (ADC counts) •RMS: 1.05±0.01 Pedestals of 216 channels in the 24th layer as function of time Change of bias point seen : pedestal shift due to power supply instability not compensated (fixed in next chip)

Residue < 0.2% MIP (test beam) Channel to channel variations : 1.7 % MIP

Pedestal can be corrected on an event by event basis to avoid pedestal shift

Noise (test beam)

In test beam, noise correlation between channels is 0.4207±0.0004 MIP (mean), 0.0551±0.0002 (stdev) before pedestal shift correction

and -0.0017±0.0003 (mean), 0.0519±0.0002 (stdev) after offline correction

Rémi CORNAT (IN2P3/LLR) - 13th Conference on Calorimetry in HEP - Pavia, Italy

Coherent Noise (baseline shift) induced by signal was measured and can be corrected in the data.

Time stability

August run vs. October run

Pedestal run to run variations : 1.1+0.4 % MIP Noise run to run variations : 2.00±0.03 % MIP More than 3% for 20% of channels

But many different setup used

0.4% MIP with muons

Pavia, Italy

Sensors : unexpected behaviour

Rémi CORNAT (IN2P3/LLR) - 13th Conference on Calorimetry in HEP - Pavia, Italy

Effects of a particle

could be propagated

hit on guard-rings

to every bordering

pixels

D edge

D internal

Crosstalk hypothesis verification

Square event issue must be solved with the cost issue in mind

Save production costs : minimize fabrication steps

Try segmented guardrings : capacitance in series along the guardring should reduce the signal propagation along the guardring

Can be done for various topologies of the guardrings with different segment length and spacing

Analytic model of guarding crosstalk

 $T = T_{elec} \times T_{pix} \times (T_{seg} \times T_{ss})^{N_{seg}} \times T_{seg} \times T_{inj}$ Measurement electronics Crosstalk Charge injector

Couplings are modeled with quadripoles filters the number of segment Nseg appears

Figure 11: Model response (set for copper-epoxy model)

Pixel	Continuous	$1\mathrm{cm}$	$3\mathrm{mm}$
A1 (ref)	0	0	-14.5
A2	-6	-21.6	-75
A3	0	-34.6	-138

Includes the whole measurement chain (band pass filter)

Electrical simulation : SPICE

Continuous			1 cm. 3 mm			$1\mathrm{cm}$				
0	-4.4	0	0	-18.3	-35.6	-11.5	-36.0	-49.8		
-4.4	-14.1	-4.4	-18.3	-34.2	-51.2	-36.0	-49.0	-71.1	-10	
0	-4.4	0	-35.6	-51.2	-64.3	-49.8	-71.1	-85.7	ав	

Guradring + pixel to pixel contribution to crosstalk are included

Copper-Epoxy hardware models

How to be confident in all these simulations ?

Investigate on segmented design without real wafers ! (first)

Continuous

Figure 6: Copper epoxy made wafer model featuring 3x3 pixels and 4 continuous guardrings.

Then perform measurements on real wafers if the crosstalk hypothesis is verified

Test bench LPC

For crosstalk measurements on sensors (real or not)

Rémi CORNAT (IN2P3/LLR) - 13th Conference on Calorimetry in HEP - Pavia, Italy

M. Benyamna/R. Cornat/F. Morisseau 16

Measurements of printed circuit models

Raw data (no corrections applied) fit well with analytic model response
Limited by noise level of measurement electronics (to be improved)
Except for 3 mm segments

Conclusion on printed circuit models

Electrical simulation includes :

- •Guardring crosstalk
- •Pixel to pixel crosstalk

Analytic model explains guardring related crosstalk •Crosscheck Electrical simulation -•Gives expected contribution

Guardring crosstalk measured eg -40for continuous shape has the same 50behavior as in the TB data

Guardring and pixel to pixel crosstalk have the same contribution for 1cm segments

Pixel to pixel crosstalk dominant ⁰ for 3mm segments

Model comparison as a function of the design option (simulation)

Segmented topology should limit square events effects to the pixel to pixel crosstalk

Extrapolation to real sensors

Name	First order formula	Set 1	Set 2	Set 3
Cpp		0.4 - $0.6\mathrm{pF}$	0.8 - 1 pF	0.8 - 1 pF
Cpg	$\varepsilon_r \varepsilon_0 \cdot \frac{L_p^2}{W_t}$	4 - 5 pF	$20\mathrm{pF}$	33 pF
Csp		pprox 60 pF/m	pprox 80 pF/m	pprox 80 pF/m
Csg	$\varepsilon_r \varepsilon_0 \cdot \frac{L_s * t_s}{W_t}$	$0.06\mathrm{pF/cm}$	$0.1\mathrm{pF/cm}$	$0.17\mathrm{pF/cm}$
Css		$0.04\mathrm{pF}$	0.1	0.1
k_{pp}		0.086	0.04	0.04

First order formula to compute the parameters of the models

Table 3: Model parameters related to the geometry of the DUT and crosstalk coupling

Si 500 µm

Continuous			$1\mathrm{cm}$			3 mm		
0	0	0	0	-21	-43	-11	-40	-68
0	0	0	-21	-42	-62	-40	-57	-83
0	0	0	-43	-62	- 80	-68	-83	-98

Si 300 µm

Continuous		$1\mathrm{cm}$			$3\mathrm{mm}$			
0	0	0	0	-20	-37	-4	-36	-67
0	0	0	-20	-44	-58	-36	-56	-85
0	0	0	-37	-58	-70	-67	-85	-103

Same trend as for printed circuit boards

But simulations assume a local hit : what if multiple hits (EM shower) ?

Are guardrings still act as guardrings (protection against breakdown) when segmented ?

Silicon Simulation

ATLAS Data from 4STRUCTURE_6PIXEL3D_4guard_1.str

First step to check capacitance values between pixels, guardrings, substrate

Then back annotate to SPICE simulation

Simulated Cap. Values are within a 20% range from expected values calculated with first order formula

3D simulation are ongoing to take into account border effects

Second step to verify if guardrings still act as guardrings...

Conclusion

A large ECAL prototype : 10 000 channels

- Highly granular
- Compact

Signal/Noise = 7.63 ± 0.01 Target is 10 : a major part of the job is done until now!

High amount of data accumulated from test beam

Prototype is qualified

Next generation is being designed

- 4x Higher granularity (0.25 cm2 pads)
- Larger sensors (18x18 cm2)
- Wider volume and stringent constraints on mechanics
- New ASIC chips embedded in PCB

Time: 12:12:26:953:042 Mon Oct 16 2006

Hits: 89 Energy: 343.98 mips

On going work on sensors

Floating guardring geometry to be tested on real sensors very soon

Run 300579:0 Event 78280