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1 Introduction

8. In this talk, we illustrate the geometric nature quark number susceptibilities. Specifically,
we shall show that the components of the susceptibility tensor define local pair correlations
against the chemical fluctuations.

9. Our consideration follows from the notion of the thermodynamic geometry[4, 5, 6]. Im-
portantly, our framework offers a platform to understand the nature of local correlations
and physics of the global phase transitions.

10. From the study of the mixture of gases, black holes in string theory[7, 8, 10], it has been
known in diverse contexts that the thermodynamic properties are geometric in nature.
This is the main aim to the present talk.

11. Quantum chromodynamics(QCD), on the other hand, is a well celebrated theory of strong
interaction. Specifically, the physics of QCD at high temperature, which is known as hot
QCD, plays a crucial role in understanding the phase structure of the system.

12. We shall explicate the nature of confinement-deconfinement transitions from the hadronic
phase to deconfined phase, or quark-gluon plasma(QGP) phase.

13. This offers a guideline for the physics of strong interactions, when the system is closer to
the the phase transition point Tc. Indeed, our proposal supplies both the local and global
content of the system in a relatively simpler approach.
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14. Here, we analyze the important regime of hot QCD from the set up of the thermodynamic
geometry. This notion is explored for the free energy of hot QCD.

15. At the near Tc, our investigation offers possible connections with the existing picture of
the quark-number susceptibility tensor [1, 11].

16. To explain the notion of the present consideration, we shall chose the free-energy of QCD
of the 2- and 3-flavor hot QCD. Our analysis of the near Tc behavior enjoys the framework
of existing quasi-particle theories.

17. We thereby incorporate the thermal fluctuations and study the impact of thermodynamic
geometry to the hot QCD.

18. It is worth recalling that the thermodynamic macrostates of an underlying equilibrium
chemical space, which is ascribed to the chosen hot QCD cinfiguration, are described by
the minima of the underlying effective energy function F = F (U, V,N).

19. For a given energy F = F (U, V,N), the consideration of Weinhold [4] defines an intrinsic
Riemannian space, which is spanned by the chemical potentials. In the present case, we
find that the metric tensor is given by

gij = ∂i∂jF (µi, T, V, S). (1)

20. This metric tensor turns out to be conformal to the Ruppenier metric [5, 6, 7, 8, 9, 10],
where the temperature of the system plays the role of the conformal factor.

21. Here, we shall study the behavior of two parameter ensembles, which are associated with
the space of chosen two distinct chemical potentials, viz., {µ1, µ2}.

2 Quark Number Susceptibility

22. As per the framework of quasi-particle theories of QCD, we hereby investigate the rela-
tion between the covariant thermodynamic geometry and the quark-number susceptibility
tensor.

23. In fact, both of these pictures have received considerable recently attention, viz., physics
of black hole and QCD thermodynamics.

24. In the quasi-particle models [1], let us recall that the quark number susceptibilities are
defined as

χij ≡
∂Ni
∂µj

=
∂2P

∂µi∂µj
= χji. (2)

25. Here i, j are the flavor indices, Ni is the quark number density, and P is the pressure of
the associated QCD configurations.

26. From the viewpoints of microscopic field theory, the susceptibility tensor χ is expressed
in terms of the associated dressed fermion propagators as a function of the self-energies
and fermions helicities [14].

3



3 Free Energy Near TC

27. Let’s first analyze what is the notion of local and global behavior of an ensemble of
quasiparticles. To do so, let’s understand how the perspective of the thermodynamic
geometry applies to hot QCD backgrounds.

28. Let {F, µi, T be the set chemical potentials, and temperature, then the free energy can
be defined as a functional representation F (µi, T ).

29. To offer the physics near TC , we may choose a particular temperature slices as an inter-
section of the line T := T

(0)
C , and thus the underlying space of chemical fluctuation is

solely spanned by the chemical potentials {µi, T} of the system.

30. An analysis of the free energy of hot QCD, near the TC , can herewith be traded off as a
function of the quark chemical potentials. The consideration of Ref.[22] shows that the
resulting temperature TC of the system is given by the following the relation

Tc(µ)

T 0
c

= 1 +
2∑
i=1

ãi
µ2
i

(T 0
c )2

, (3)

where, ã1 = ã2 = −0.07 for the 2-flavor case and ã1 = ã2 = −0.114 for the 3-flavor QCD.

31. In the small chemical potential limit (β|µ| << 1), we find that the free energy appears
only up to the quartic terms in the βµ. Thus, the underlying expression can be written
as

F = T 4
(
a0 + c1

µ2
1

T 2
+ c2

µ2
2

T 2
+ c14

µ4
1

T 4
+ c24

µ4
2

T 4

)
+ T 4O(µ6/T 6). (4)

32. Considering the fact that high temperature behavior of QCD can be mapped into an
ensemble of effective quasi-particles. We find interesting dimensions of the hot QCD[25].

33. In general, the free energy reduces to the following

F (µ1, µ2) : = a0(b+ a1µ
2
1 + a2µ

2
2)

4 + (b+ a1µ
2
1 + a2µ

2
2)

2

×(c1µ
2
1 + c2µ

2
2) + c

(1)
4 µ4

1 + c
(2)
4 µ4

2, (5)

where b = T 0
c , a1 = ã1/b and a2 = ã2/b.

34. Both the a1 and a2 have the dimension of b−1(GeV). Hereby, the free energy is measured
in the units of GeV 4.

35. The various coefficients appearing above are chosen [22, 25] as follows:

For 2-flavor QCD,

a0 = −8π2

45

(
1 +

42

32

)
, c1 = c2 = 1/2, c14 ≡ c24 = − 1

4π2
. (6)

For 3-flavor QCD,

a0 = −8π2

45

(
1 +

63

32

)
, c1 = 1, c2 = 1/2, c14 = − 1

2π2
, c24 = − 1

4π2
. (7)
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36. The free energy with an incorporation of the thermal fluctuations takes the following form

F (µ1, µ2) : = a0 +
c1µ

2
1 + c2µ

2
2

(b+ a1µ2
1 + a2µ2

2)
2

+
1

2
ln(

c1µ
2
1 + c2µ

2
2

(b+ a1µ2
1 + a2µ2

2)
2
). (8)

37. If the components of the thermodynamic metric tensor are measured in the units of
GeV 2, then the thermodynamic curvature is measured in the units of GeV 4, whenever
the chemical potentials µi are in the units of GeV .

4 Intrinsic Thermodynamic Geometry

38. As per the definition of Weinhold geometry, the components of the intrinsic metric tensor
[4] are,

gµ1µ1 =
∂2F

∂µ2
1

, gµ1µ2 =
∂2F

∂µ1∂µ2

, gµ2µ2 =
∂2F

∂µ2
2

. (9)

39. We shall illustrate that the symmetry property of the χij and gij remains the same.

40. The System is well-defined as long is a positive determinant of the metric tensor

‖g‖ = Fµ1µ1Fµ2µ2 − F 2
µ1µ2

(10)

41. Next, the global correlation is defined by the scalar curvature

R = −1

2
(Fµ1µ1Fµ2µ2 − F 2

µ1µ2
)−2(Fµ2µ2Fµ1µ1µ1Fµ1µ2µ2

+Fµ1µ2Fµ1µ1µ2Fµ1µ2µ2 + Fµ1µ1Fµ1µ1µ2Fµ2µ2µ2
−Fµ1µ2Fµ1µ1µ1Fµ2µ2µ2 − Fµ1µ1F 2

µ1µ2µ2

−Fµ2µ2F 2
µ1µ1µ2

). (11)

42. Interestingly, the relation between thermodynamic scalar curvature and thermodynamic
curvature tensor of two dimensional intrinsic surface (M2(R), g) (see for details [7]) is
given by

R =
2

‖g‖
Rµ1µ2µ1µ2 . (12)

43. More clearly, the scalar curvature for two component systems can be thought of as the
square of the correlation length at some given QCD transition temperature TC(µ1, µ2) to
beR(µ1, µ2) ∼ ξ2, where the ξ(TC) identified as the correlation length of the corresponding
system. Physically, we find that the thermodynamic curvature corresponds to the nature
of the correlation present in the statistical system.

5



5 2-flavor QCD

5.1 Leading Order

44. Considering Eq.5 in the neighborhood of TC and substituting for TC as function of µ1 and
µ2, one obtains the following expression:

F (µ1, µ2) : = a0(b+ a1µ
2
1 + a2µ

2
2)

4 + (b+ a1µ
2
1 + a2µ

2
2)

2

×(c1µ
2
1 + c2µ

2
2). (13)

45. Employing the formula Eq. 9, the following polynomial expression arise for the compo-
nents of the metric tensor

gµ1,µ1 = 1.12µ4
2 + 5.60µ4

1 + 6.72µ2
1µ

2
2 − 6.48µ4

1µ
2
2

−3.89µ2
1µ

4
2 − 2.21µ2

1 − 0.74µ2
2 + 0.13

−3.02µ6
1 − 0.43µ6

2,

gµ1,µ2 = −1.48µ1µ2 + 4.48µ3
1µ2 + 4.48µ1µ

3
2

−2.59µ5
1µ2 − 2.59µ1µ

5
2 − 5.18µ3

1µ
3
2,

gµ2,µ2 = 1.12µ4
1 + 5.60µ4

2 + 6.72µ2
1µ

2
2 − 6.48µ2

1µ
4
2

−3.89µ4
1µ

2
2 − 2.21µ2

2 − 0.74µ2
1 + 0.13

−3.02µ6
2 − 0.43µ6

1. (14)

46. As announced earlier, it is hereby evident that the components of metric tensor indeed
satisfy

(i) gµ1,µ1(µ1, µ2) = gµ2,µ2(µ2, µ1)

(ii) gµ1,µ2(µ1, µ2) = gµ1,µ2(µ2, µ1).

47. In fact, the symmetry of the components of the metric tensor viz. symmetry under the
exchange of the chemical potentials µ1 and µ2 shows fundamental symmetry properties
of microscopic ensemble, e.g., parity symmetry under the change of the sing of µ1 and µ2.

48. The determinant of the metric tensor remains non-zero in the limit of the small chemical
potential limit defines a non-degenerate thermodynamic geometry near TC .

49. Namely, the stability of the system is determined from the determinant of the metric
tensor. It can be expressed as following polynomial

g(µ1, µ2) =
6∑

k,l=0|k+l≤6

aAk,lµ
2k
1 µ

2l
2 (15)

50. Employing the formula displayed in the Eq.12, it turns out that the thermodynamic scalar
curvature takes the following expression

R(µ1, µ2) = − 4

g2

7∑
k,l=0|k+l≤7

bAk,lµ
2k
1 µ

2l
2 . (16)

51. It turns out that the physically interesting domain near TC arises, when both the chemical
potentials lie in the range of 0.0 to 0.2.
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5.2 Non Vanishing {c14, c24}

52. Considering the free energy given in Eq. 5, and employing Eq. 9 for the non vanishing
c14, c

2
4 as defined in Eq. 6, the following expression are obtained for the components of the

metric tensor

gµ1,µ1 = 6.72µ2
1µ

2
2 − 2.52µ2

1 − 0.74µ2
2 + 0.13 + 5.60µ4

1

+1.12µ4
2 − 3.02µ6

1 − 0.43µ6
2 − 6.48µ4

1µ
2
2

−3.89µ2
1µ

4
2,

gµ1,µ2 = −1.48µ1µ2 + 4.48µ3
1µ2 + 4.48µ1µ

3
2 − 2.59µ5

1µ2

−2.59µ1µ
5
2 − 5.18µ3

1µ
3
2,

gµ2,µ2 = 6.72µ2
1µ

2
2 − 2.52µ2

2 − 0.74µ2
1 + 0.13 + 5.60µ4

2

+1.12µ4
1 − 3.02µ6

2 − 0.43µ6
1 − 6.48µ2

1µ
4
2

−3.89µ4
1µ

2
2. (17)

53. We see further that the symmetry(µi → −µi) and the exchange symmetry of the thermo-
dynamic geometry remain conserved, as mentioned in the previous case.

54. In this case, the determinant of the metric tensor turns out to be a polynomial function
in {µ1, µ2}, which in a compact notation, is given by

g(µ1, µ2) =
6∑

k,l|k+l=0≤6

aBk,l µ
2l
1 µ

2k
2 (18)

55. Interestingly, the determinant of the metric tensor remains non-zero in the small chemical
potential limit and thus defines a non-degenerate thermodynamic geometry near TC .

56. The underlying thermodynamic curvature can be written as

R(µ1, µ2) = − 4

g2

7∑
k,l=0|k+l≤7

bBk,l µ
2k
1 µ

2l
2 . (19)

5.3 Thermal Fluctuations

57. We hereby discuss the thermodynamic geometry of hot QCD with an inclusion of the
thermal fluctuations about an equilibrium configuration.

58. In this case, the corresponding free energy of the two flavor QCD reads

F (µ1, µ2) = a0 +
c1µ

2
1 + c2µ

2
2

(b+ a1µ2
1 + a2µ2

2)
2

+
1

2
ln(

c1µ
2
1 + c2µ

2
2

(b+ a1µ2
1 + a2µ2

2)
2
). (20)
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59. Employing the formulae of the metric tensor as displayed in Eqs.9, we find that the
components of the metric tensor in the scale of 1010 are given by

gµ1,µ1 = {−0.17(µ2
1 − µ2

2)− 1.33(µ10
2 − µ10

1 )

+9.96µ8
2 − 36.26µ8

1 − 3.55µ4
2 − 5.82µ4

1

+2.67(µ6
2µ

4
1 − µ6

1µ
4
2)− 102.80(µ2

2µ
4
1 − 0.5µ2

1µ
4
2)

−78.93µ4
1µ

4
2 − 36.27µ8

1 − 51.40µ6
1 − 5.82µ4

1

−1.33µ10
1 − 6.38µ6

2µ
2
1 − 98.86µ2

2µ
6
1

−4.00(µ2
2µ

8
1 − µ2

1µ
8
2)− 9.37µ2

1µ
2
2}

×(−203 + 340µ2
1 + 340µ2

2)
−4(µ2

1 + µ2
2)
−2,

gµ1,µ2 = 2µ1µ2{1.13(µ2
1 + µ2

2) + 23.12(µ6
2 + µ6

1)

+1.33(µ8
1 + µ8

2) + 51.40(0.50µ4
1 + µ4

2)

+69.36(µ2
2µ

4
1 + µ2

1µ
4
2)8.01(µ4

1 + µ4
2)

+5.34(µ2
1µ

6
2 + µ6

1µ
2
2) + 51.40µ2

1µ
2
2 − 0.17}

×(−203 + 340µ2
1 + 340µ2

2)
−4(µ2

1 + µ2
2)
−2,

gµ2,µ2 = {−0.17(µ2
2 − µ2

1)− 1.33(µ10
1 − µ10

2 )

+9.96µ8
1 − 36.26µ8

1 − 3.55µ4
2 − 5.82µ4

1

+2.67(µ6
1µ

4
2 − µ6

2µ
4
1)− 102.80(µ2

1µ
4
2

−0.5µ2
2µ

4
1)− 78.93µ4

2µ
4
1 − 36.27µ8

2

−51.40µ6
2 − 5.82µ4

2 − 1.33µ10
2 − 6.38µ6

1µ
2
2

−98.86µ2
1µ

6
2 − 4.00(µ2

1µ
8
2 − µ2

2µ
8
1)

−9.37µ2
2µ

2
1} × (µ2

1 + µ2
2)
−2

(−203 + 340µ2
1 + 340µ2

2)
−4. (21)

60. We see that the symmetry of the metric tensor remains preserved under the thermal
fluctuations.

61. In this case, we find the following positive definite expressions for the determinant of
thermodynamic metric tensor

g(µ1, µ2) = 4

∑7
k,l=0|k+l≤7 a

C
l,k µ

2k
1 µ

2l
2

(µ2
1 + µ2

2))
2(0.20− 0.34(µ2

1 − µ2
2))

7
. (22)

62. The thermodynamic curvature takes the form of the ratio of two polynomial, which can
be written as

R(µ1, µ2) = − 4

g2
(0.20− 0.34(µ2

1 + µ2
2)

×
12∑

k,l=0|k+l≤12

bCk,l µ
2k
1 µ

2l
2 , (23)

where the coefficients {bCk,l} of the polynomial expression appearing in the numerator may
easily be tracked from the corresponding expression of the free energy.
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63. We find that the thermal contributions are dominant in the range 0.1 < µi < 0.2 of the
chemical potentials.

64. In general, for any quasi-particle free energy F (µ1, µ2) :=
∑

i,j ai,jµ
i
1µ

j
2 satisfying ai,j =

aj,i, we find that the associated determinant and scalar curvature of the intrinsic Rie-
mannian manifold, when considered as functions of the quark chemical potentials, are
symmetric functions g(µ1, µ2) = g(µ2, µ1) and R(µ1, µ2) = R(µ2, µ1).

6 3-flavor QCD

6.1 Leading Order

65. As mentioned in 2-flavor cases, let’s analyze the behavior of 3-flavor QCD free energy with
or without an inclusion of the thermal corrections. As a function of the quark chemical
potentials, we shall systematically offer the covariant metric tensor, determinant of the
metric tensor and scalar curvature of the 3-flavor QCD thermodynamics.

66. In this case, the components of the metric tensor reduce to

gµ1,µ1 = −7.59µ2
1 − 2.30µ2

2 + 0.26 + 33.76µ4
1

+6.08µ4
2 − 32.50µ6

1 + 38.51µ2
1µ

2
2

−69.65µ4
1µ

2
2 − 41.79µ2

1µ
4
2 − 4.64µ6

2,

gµ1,µ2 = −4.60µ1µ2 + 25.67µ3
1µ2 + 24.33µ1µ

3
2

−27.86µ5
1µ2 − 55.72µ3

1µ
3
2 − 27.86µ1µ

5
2,

gµ2,µ2 = −6.22µ2
1 − 2.30µ2

2 + 0.22 + 6.41µ4
1

+28.75µ4
2 − 4.64µ6

1 + 36.50µ2
1µ

2
2

−41.79µ4
1µ

2
2 − 69.65µ2

1µ
4
2 − 32.50µ6

2. (24)

67. The components of the metric tensor at zero chemical potentials take the values gµ1,µ1 =
0.26, gµ2,µ2 = 0.22 and gµ1,µ2 = 0, which in effect respectively describe the diagonal and
off diagonal quark susceptibility tensors.

68. We find that the determinant of the metric tensor reduces to the value of g = 0.06 at zero
chemical potentials.

69. Whilst, the scalar curvature vanishes at this point and thus the underlying statistical
system approaches a non-interacting system.

70. On the other hand, the determinant of the metric for this 3 flavor case is as follows

g(µ1, µ2) =
6∑

k,l=0|k+l≤6

ãAk,l µ
2l
1 µ

2k
2 (25)
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71. In this case, we see that g(µ1, µ2) 6= g(µ2, µ1), which follows from the fact that the 3-flavor
QCD free energy (displayed in Eq.5) is not symmetric under the exchange in the chemical
potentials.

72. Interestingly, the same remains true for the associated curvature, which may be seen from

R(µ1, µ2) = − 4

g2

7∑
k,l=0|k+l≤7

b̃Ak,l µ
2k
1 µ

2l
2 (26)

73. In this case, it turns out that the determinant of the metric tensor as a function of
the chemical potentials has two lines of minima and the corresponding maximum lying in
between the minima, which occurs when one of the chemical potentials reaches a non-zero
constant value, while the other vanishes.

74. There are two distinct bumps of varying heights instead of a continuous curves of macro-
scopic interactions. The height of the bumps depends on the domain chosen in the (u, v)
space. The significance of these bumps is that they signify a nontrivial thermodynamical
interactions in the 3-flavor QCD system.

6.2 Non Vanishing {c14, c24}

75. Let’s now investigate role of the the thermodynamic geometry corresponding to the free
energy as given by the Eq.4.

76. We find that the components of the metric tensor are

gµ1,µ1 = −38.51µ2
1µ

2
2 + 6.08µ4

2 − 69.65µ4
1µ

2
2

−8.20µ2
1 − 2.30µ2

2 + 0.61 + 33.76µ4
1

−41.79µ2
1µ

4
2 − 32.50µ6

1 − 4.64µ6
2,

gµ1,µ2 = −4.60µ1µ2 + 25.67µ3
1µ1 + 24.33µ1µ

3
2

−27.86µ5
1µ2 − 55.72µ3

1µ
3
2 − 27.86µ1µ

5
1,

gµ2,µ2 = −36.51µ2
1µ

2
2 + 28.75µ4

2 − 41.79µ4
1µ

2
2

−2.30µ2
1 − 6.53µ2

2 + 0.22 + 3.42µ4
1

−69.65µ2
1µ

4
2 − 4.64µ6

1 − 32.50µ6
2. (27)

77. In this case, the conclusion to be drawn in the range of the chemical potentials as con-
sidered in the previous case remains the same, except the fact that the number of bumps
is increased. This indicates relatively stronger interactions in the internal space of quark
chemical potentials.

78. In the range of the chemical potentials (u, v) = (0.2, 0.2), the determinant of the metric
tensor, when viewed as a function of (u, v) is observed to be relatively flatter wiith respect
to the previous case.
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79. The determinant of the metric tensor turns out to be polynomial of the following explicit
form

g(µ1, µ2) =
6∑

k,l=0|k+l≤6

ãBk,l µ
2l
1 µ

2k
2 (28)

80. We herewith see that g(µ1, µ2) 6= g(µ2, µ1). This follows from the fact that the free energy
with the ( µ

T
)4 contributions, as displayed in the Eq.4, remains a non-symmetric function

under the exchange of the chemical potentials.

81. In fact, we find that the same outcomes remains true for the associated curvature

R(µ1, µ2) = − 4

g2

7∑
k,l=0|k+l≤7

b̃Bk,l µ
2k
1 µ

2l
2 (29)

82. As in the above cases, when the free energy is treated as a function of the chemical
potentials, we see that the thermodynamic space spanned by the chemical potentials
remains completely regular on the intrinsic manifold, except at the points where the
determinant of the metric tensor vanishes.

83. The intrinsic space spanned by the chemical potentials thus turns out to be a well-defined
and stable statistical configuration. In the domain of physical interests, the determinant
of the associated metric tensor remains positive definite.

84. For a range of {µ1, µ2}, we see that the underlying diagonal quark susceptibility tensor
does not remain the same at zero chemical potentials.

85. In particular, we find gµ1,µ1 = 0.61, gµ2,µ2 = 0.22 and gµ1,µ2 = 0. In fact, the determinants
of the metric tensor and the scalar curvature of the Gaussian fluctuations possess the
same physical behavior under the ( µ

T
)4-contributions, which continues even at the zero

chemical potentials.

6.3 Thermal Fluctuations

86. We us finally discuss the thermodynamic properties of 3-flavor QCD when the thermal
fluctuations are taken into the consideration. We thus offer the conditions such that the
underlying system can be treated as a well-defined statistical ensemble.

87. A straightforward computation yields that the components of the metric tensor in the
scale of 1010 read to the following simple formulas

gµ1,µ1 = −2(−197 + 578µ2
1 + 578µ2

2)
−4(2µ2

1 + µ2
2)
−2

{7.50µ6
2 + 3.80µ8

2 + 0.30µ2
1 − 0.15µ2

2

−2.56µ4
2 + 182.75µ4

1µ
4
2 − 28.69µ2

1µ
4
2

+78.13µ6
1µ

4
2 − 22.32µ10

1 − 416.12µ8
1
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−343.63µ6
1 − 11.16µ8

1µ
2
2 − 91.30µ6

1µ
2
2

−19.06µ2
1µ

2
2 − 274.74µ4

1µ
2
2 − 20.83µ4

1

+62.18µ2
1µ

6
2 + 100.45µ4

1µ
6
2 + 33.48µ2

1µ
8
2},

gµ1,µ1 = 4µ1µ2(−197 + 578µ2
1 + 578µ2

2)
−4(2µ2

1 + µ2
2)
−2

{7.61µ6
2 + 1.77µ2

1 + 1.77µ2
2 + 27.68µ4

2

+78.13µ4
1µ

4
2 + 107.83µ2

1µ
4
2 + 33.48µ8

1

+385.68µ6
1 + 89.29µ6

1µ
2
2 + 126.27µ2

1µ
2
2

+385.68µ4
1µ

2
2 + 143.05µ4

1 + 22.32µ2
1µ

6
2

−0.15},
gµ2,µ2 = (−197 + 578µ2

1 + 578µ2
2)
−4(2µ2

1 + µ2
2)
−2

{80.72µ6
2 + 107.83µ8

2 + 0.30µ2
2 − 0.15µ2

2

−11.16µ10
2 + 6.53µ4

2 + 1911.89µ4
1µ

4
2

+368.99µ2
1µ

4
2 + 66.97µ4

1µ
6
2 − 69.97µ10

1

−340.04µ8
1 + 75.53µ6

1 − 100.54µ8
1µ

2
2

+1278.78µ6
1µ

2
2 + 17.29µ2

1µ
2
2 + 437.31µ4

1µ
2
2

+15.52µ4
1 + 801.80µ2

1µ
6
2 + 178.58µ4

1µ
6
2

+89.29µ8
1µ

2
2}. (30)

88. The determinant of the metric tensor is given by the following polynomial

g(µ1, µ2) =
(

(0.197− 0.578(µ2
1 + µ2

2))
7(µ2

1 + 0.50µ2
2)

2
)

×
12∑

k,l=0|k+l≤12

b̃Ck,l µ
2k
1 µ

2l
2 , (31)

89. In this case, we see that the determinant of the metric tensor plotted against the chemical
potentials acquires two finite size bumps which were absent in the case without thermal
corrections.

90. Hereby, we find that the domain of the interaction has shifted towards the origin, as in
the previously treated case of 2-flavor QCD. We observe that there are two bumps of the
interactions present in the limit of chemical potentials.

91. Interestingly, the strength of interaction depends on an exact location of the point cho-
sen in the internal space. For example, in the small limit of the constituent chemical
potentials, we notice that the interaction could be as high as 104 or as small as 102.

92. In this case, it turns out further that the thermodynamic curvature can be exprssed
as the ratio of two polynomial expressions. Specifically, we find that the underlying
thermodynamic scalar curvature is given by

R(µ1, µ2) = − 4

g2
(0.197− 0.578(µ2

1 + µ2
2))

12∑
{k,l=0|k+l≤12}

b̃Ck,l µ
2l
1 µ

2k
2 , (32)

12



where the coefficients {b̃k,l} appearing in the numerator of the scalar curvature may
suitably be defined from the corresponding free energy funtion.

93. Thus, in this case, we see that one can always find, from the general considerations of
the intrinsic Riemannian geometry, as mentioned in the case of 2-flavor QCD, that, for
a given polynomial free energy, after including the logarithmic contributions, there exist
certain bump(s) in the intrinsic Reimannian space of the chemical potentials.

7 Conclusion and Outlook

94. We have examined the role of the intrinsic geometry for the 2-flavor and 3-flavor QCD
thermodynamic configurations.

95. The free energy, near the critical temperature, describes thermodynamic geometric be-
havior and possesses the symmetry of the quark susceptibilities. Specifically, we have
demonstrated that the components of the thermodynamic metric correspond to the mi-
croscopic quark number susceptibility tensor.

96. The physics of fluctuations describes properties of the underlying statistical system, e.g.
crossover/ transition near the critical temperature.

97. Based on quasi-particle theory, our analysis is consistent with the Hard Thermal Loop
and finite temperature resummed Hard Thermal and Dense Loops in hot QCD.
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