

AMS on the International Space Station

- Primordial Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e⁺, p
 , γ)
- Relative abundance of nuclei and isotopes in primary cosmic rays
- γ ray astrophysics

The purpose of the AMS experiment is to perform accurate, high statistics, long measurements of charged cosmic rays (0.5 GV - 1 TV) and γ rays (E>1GeV)

AMS01 at KSC (Florida) in 1998

AMS-01 pilot experiment: STS91, June 2nd - 12th 1998

- I0 days of data taking in orbit:
 - 400 Km altitude
 - latitudes <51.7°
 - all longitudes
- 10⁸ events recorded
- Physics results
 - (Phys. Rep. 366 (2002) 331)
 - precise measurements of primary fluxes
 - detection of secondary fluxes (quasi trapped)
 - antimatter limit at 10⁻⁶

The instrument we need has ...

- performance a la 'particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly work in the space environment:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100^{\circ}C$)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in weight (15000 lb), power (~2KW), bandwidth and maintenance
- compliant with Electromagnetic Interference and Electromagnetic Compatibility specs

AMS: A TeV precision, multipurpose particle physics spectrometer in space

6-07-2011

Recent AMS02 history in short

- 2000: started the activity of design and building
- fall 2009: integration at CERN
- February 2010: test beam at CERN
- spring 2010: EMI and TV test at ESTEC (ESA)
- late spring 2010: magnet replacement at CERN
- August 2010: test beam at CERN
- fall/winter 2010-2011 integration at KSC (Florida)
- May 16th 2011: launch!
- May 19th 2011: first activation in space: everything is working!!

Houston, JSC - May 16, 2011@ 07:56 AM

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

-

Cape Canveral, KSC - May 16, 2011 @ 08:56 AM

And.

and the same in

SAMSUNG

\$3

34.3325 FE

First Tracker calibration in space

6-07-2011

Data from the 1st few minutes - 20 GV/c Electron, 19 May 2011

Data from the 1st few minutes – 42 GV/c Carbon, 19 May 2011

Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- 6 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- 10 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resol ~10% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+25 oper.)

Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- 6 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- 10 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resol ~10% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+25 oper.)

AMS silicon ladders

- 1024 high dynamic range,
 AC coupled readout
 channels:
 - 640 on junction (S) side
 - 384 on ohmic (K) side
- Impl/readout pitch:
 - 27.5/110 μm (S side)
 - 104/208 µm (K side)
- 7 15 wafers (28 60 cm)

192 flight units, 210 assembled in 3 lines:
Perugia (I), Geneva-ETHZ (CH), G&A (Carsoli, I)

AMS silicon ladders

- 1024 high dynamic range,
 AC coupled readout channels:
 - 640 on junction (S) side
 - 384 on ohmic (K) side
- Impl/readout pitch:
 - 27.5/110 μm (S side)
 - 104/208 µm (K side)
- 7 15 wafers (28 60 cm)

 192 flight units, 210 assembled in 3 lines:
 Perugia (I), Geneva-ETHZ (CH), G&A (Carsoli, I)

Ladder components (junction/S side)

Ladder components (ohmic/K side)

double sided, DC coupled 300 µm thickness 7 - 15 sensors in a ladder produced at:

- Colybris (CH)
- IRST (IT)

700 pF coupling capacitances

6 VA_hdr64a (IDEas, NO)
384 channels, 0.7 mW power each
CR-RC shaper and S&H
4 μs shaping time
100 MIP dynamic range

Data Reduction Board (TDR2)

analog signal in from a ladder

- Collect analog data and digitize it (90 µs irred. dead time)
- Perform online data compression
 - Remove Pedestals
 - Calculate and Remove Common Noise
 - Search Clusters
- Up to 5 KHz trigger rate in compressed mode

6-07-2011

Layout modification to use the permanent magnet

Inner Tracker integration

Outer plane integration

External planes integration

First muon with the "new" Tracker

Tracker signals

The particles we see

The particles we see

6-07-2011

In flight experience

M. Duranti

Cooling: 2 phases CO₂ pumped loop

6-07-2011

In flight experience: cooling and currents

6-07-2011

Experience to come: alignment

on ground results inner planes

6-07-2011

The performance we do expect

6-07-2011

M. Duranti

Conclusions

- AMS02 is in orbit since May 16th 2011
- No damage due to the launch stress or to the space environment, all the system are working in both the primary and redundant part
- All the detectors are properly functioning with DAQ in nominal conditions since May 19th 2011 (> 2 billions triggers)
- Tracker behavior is as expected in term of signal and noise levels
- 10+ years on board the ISS: great discovery potential, lot of work ongoing (alignment!)

Two astronauts working on the Space Station near AMS

Stay tuned for new physics!

Stay tuned for new physics!

Radiation 'hard' electronics

6-07-2011

