The ATLAS Insertable B-Layer (IBL) Project C. Gemme, INEN Gerova On behalf of the ATLAS IBL COllaboration

RD11 Firenze - 6-8 July 2011

100034

ATLAS Pixel Detector: Layout

Designed to provide at least 3 hits in $|\eta| < 2.5$

- 3 barrel +3 forward/backward disks
- 112 staves with 13 modules each
- 48 sectors with 6 modules each

RD11, C. Gemme, ATLAS IBL Overview

ATLAS Pixel Detector: Module

- The building block of the detector is the module (1744 in total).
 - 16 Front-End chips (FE-I3) with a module controller (MCC), 0.25 μm technology.
 - 46080 R/O <u>channels 50μmx400μm</u> lacksquare
 - Planar n-in-n DOFZ silicon sensor 250 μ m thick.
 - Readout speed 40-80 Mb/link
 - Designed <u>for NIEL 1x10¹⁵ n_{ea}/cm²</u>, 50 Mrad dose and a peak luminosity of $1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Foreseen to replace the Pixel detector in ~2021 (HL-LHC).

Insertable B-Layer: Project

- The Pixel innermost layer (B-layer) was designed for replacement every 300 fb⁻¹
 - the requirements for replacibility in a long shutdown were released in the building phase.
 - New option (Feb 2009): to insert a new layer!
 - The envelopes of the existing Pixel detector and the beam pipe leave today a radial free space of 8.5 mm. The reduction of the beam-pipe radius of 5.5 mm brings it to <u>14 mm</u> and make it possible.
 - The Insertable B-Layer IBL will be built around a new beam pipe and slipped inside the present detector in situ. O(9 months) needed.

RD11, C. Gemme, ATLAS IBL Overview

Insertable B-Layer: Layout

- ✓ Reduced Beam Pipe
 - Inner Radius 23.5 mm.
- Very tight clearance
 - Hermetic to straight tracks in $\boldsymbol{\phi}$
 - No overlap in z: minimum gap between sensor active area!
- Layout parameters:
 - IBL envelope : <u>9 mm in R!</u>
 - 14 staves
 - <R_{sens}> = 33 mm
 - Total active length = 60 cm
 - Coverage in $|\eta| < 2.5$

Insertable B-Layer: Motivations

- ✓ Motivations for a 4th low radius layer in the Pixel Detector
 - Luminosity pileup
 - FE-I3 has 5% inefficiency at the B-layer occupancy for 2.2x10³⁴cm⁻²s⁻¹
 - IBL improves tracking, vertexing and b-tagging for high pileup and recovers eventual failures in present Pixel detector.
 - Today the B-layer has 3.1% of inefficiency.

Radiation damage

- Degradation of the existing B-Layer reduce detector efficiency after 300-400 fb⁻¹. Not an issue as forecast for 2021 is ~ 330 fb⁻¹
- It serves also as a technology step towards HL-LHC.
- IBL Installation foreseen in 2013, during LHC first shutdown.

Insertable B-Layer: Performance

- ✓ b-tagging performance with IBL at 2x10³⁴ cm⁻²s⁻¹ is similar to current ATLAS without pileup
- Studied scenarios with detector defects, the IBL recovers the tracking and b-tagging performance.
 - Shown 10% cluster inefficiency in Blayer.
 - IBL fully recovers tracking efficiency.
 - With IBL only small effect on btagging performance

Number of pileup interactions

Number of pileup interactions

RD11, C. Gemme, ATLAS IBL Overview

Requirements for sensors/electronics

- IBL environment: Radiation hard FE and sensor.
 - Integrated luminosity seen by IBL = 550 fb⁻¹ \rightarrow Survive until to HL-LHC
 - IBL design peak luminosity = $3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Design sensor/electronics for total dose:
 - NIEL dose = $3.3 \times 10^{15} \pm (\text{"safety factors"}) \ge 5 \times 10^{15} \text{ n}_{eg}/\text{cm}$
 - Ionizing dose ≥ 250 Mrad
- Two different pixel sensor technologies will be used:
 - n-in-n planar and <u>3D</u> silicon detectors.

Extra specifications:

- Sensor HV: max 1000 V
- Sensor Thickness: 225±25µm.
- Sensor Edge width: below $450 \ \mu m$ (No shingling in z)
- Tracking efficiency > 97%
- Sensor max power dissipation < 200 mW/cm^2 at T = -15 °C
- Operation with low (~1500e⁻) threshold.

FE electronics

- Reason for a new FE design:
 - Increase rad hardness
 - Reduce inefficiency at high luminosity
- New logic: instead of moving all the hits in EOC (FE-I3), store the hits locally in each pixel and distribute the trigger.
- Advantages:
 - Only 0.25% of pixel hits are shipped to EoC → DC bus traffic "low".
 - Save digital power
 - Take higher trigger rate
 - At 3×LHC full lumi, inefficiency: ~0.6%
- This requires local storage and processing in the pixel array
 - Possible with smaller feature size technology (130 nm)
- Biggest chip in HEP to date: 4 cm²

	FE-I3	FE-14
Pixel size [µm²]	50x400	50x250
Pixel array	18x160	80x336
Chip size [mm ²]	7.6x10.8	20.2x19.0
Active fraction	74%	89%
Analog curr [µA/pix]	26	10
Digital curr [µA/pix]	17	10
Analog Voltage [V]	1.6	1.5
Digital Voltage [V]	2.0	1.2
Readout [Mb/s]	40	160

Dose and noise

- Typical noise of the bare FE after calibration ~ 110e⁻. Measured before and after irradiation for different DAC settings.
- ✓ 800 MeV proton irradiation at Los Alamos:

Low threshold operation

- Studies on PPS and 3D assemblies irradiated with protons to 5 10¹⁵ n_{eq}/cm².
 - Noise occupancy increase when Threshold below 1500e⁻.
 - At 1100 e⁻, occupancy is ~10⁻⁷ hits/BC/pixel.
- Low threshold operation with irradiated sensors demonstrated!

2-Chip Planar Sensor

✓ Main advantage:

• All benefits of a mature technology (yield, cost, experience).

Main challenges:

- Low Q collection after irrad,
 - Low threshold FEoperation.
 - High HV needed: important requirement for the services and cooling.

300

250

- Inactive area at sensor edge.
 - Slim edge sensors.

RD11, C. Gemme, ATLAS IBL Overview

2-Chip Planar Sensor: Performance

✓ Final choice for the IBL design:

- <u>Thickness is 200 um</u>. Best compromise between Charge collection and material budget.
- n-in-n technology with <u>~200</u> <u>µm slim edge (is 1100 um in</u> the Pixel detector)
- Slim edge: 500 µm long edge pixels with guard ring shifted underneath on the opposite side from pixel implant.
 - Only moderate deterioration. 250/200 um of inactive edge before/after irradiation. Bring to total geometrical inefficiency of 98.3-98.5%.
- High efficiency (>97%) for tracks at operation conditions (see next slide).

2-Chip Planar Sensor: Performance

RD11, C. Gemme, ATLAS IBL Overview

1-Chip 3D Sensor

- ✓ Main advantage:
 - Radiation hardness.
 - Low depletion voltage (<180V).
- Main challenges:
 - Production yield.
 - In-column inefficiency at normal incidence.
 - Active edges and full 3D processing not established enough on project time scale.
- Two vendors CNM and FBK
 - Production schedule requires aggregate production

1-Chip 3D Sensor

- ✓ Main advantage:
 - Radiation hardness.
 - Low depletion voltage (<180V).
- Main challenges:
 - Production yield.
 - In-column inefficiency at normal incidence.
 - Active edges and full 3D processing not established enough on project time scale.

Two vendors CNM and FBK

- Production schedule requires aggregate production.
- Double-Sided full passing 3D, 2 electrodes per pixel
 - ~10 µm column diameter
 - ~ 70 µm interdistance
- Wafer yield ~ 55%

1-Chip 3D Sensor: Performance

1-Chip 3D Sensor: Efficiency

1-Chip 3D Sensor: Edge Efficiency

- \checkmark For 3D sensor the edge pixel has a regular length.
 - Inactive area: 200 µm
- Actual efficiency extends:
 - 50%: 20-30 µm
- Effective inactive area from dicing: ~200 µm.
- Same for all 3D samples.

Sensor choice

- Sensor Review hold on July 4/5. Fresh News!
 - The review panel found nothing is wrong in the 2 technologies.
 - Proposed a mixed scenario with both sensors in:
 - 3D technology to populate the forward region where the tracking could take advantage of the electrode orientation to give a better zresolution after heavy irradiation
- Target to 25% coverage with 3D Verify in February 12 where we stand then move up to 50%.
 - Anyhow Continue the production of the Planar to cover the whole IBL.

Modules

IBL modules preproduction with Planar and 3D sensors

- Over 78 single-chip assemblies produced for the sensor qualification.
- Many of those irradiated to check design requirements.
- Bump bonding yield at IZM around 85%. Good for the start-up with FEI4.

Now addressing thinner electronics

- Thin (100-150 $\mu m)$ FEI4 for a low X_0 module.
- Safe bump-bonding requires max bend of ~15µm. Achievable with a minimal thickness of 450µm. Use temporary glass <u>handling wafer</u> + laser de-bonding.
- First devices produced and under tests.

Module flex on top for final assembly

• Up to now just used test card.

Stave

Mechanical structure:

- Tested a large number of prototypes to find right balance between thermal performance, mechanical stiffness and reasonable X₀.
- Shell structure filled with light (0.2g/cc) carbon foam for heat transfer to central cooling pipe (1.5mm ID Ti pipe 0.1mm thick)
- Cooled with CO2 system at -40C (~1.5kW total).

Services on the back

- 500 μm Flex Al/Cu bus glued/laminated on the stave backside to route signals and power lines. (Al-only solution in parallel)
- The flex design include wings to be folded and glued to the modules.

RD11, C. Gemme, ATLAS IBL Overview

Conclusions

- Tight schedule for installation in 2013 shutdown. On the critical path:
 - New revision of the FEI4 submitted in July and back in October.
 - Bump bonding with thin electronics.
 - Keep the material under control (1.5% X₀)

Activities	Starting	Ending
FEI4-B	July 11: Submission	Oct to Dec 11 for wafer tests
Bump bonding	Aug 11: pre-production	July 12: Completion
Module assembly	Feb 12: 1 st modules ready for loading	Oct to Dec 12 depending of sensor
Module loading	Feb 12: → 4 staves to be ready by Apr 12	Jan 13: Completion
Stave loading	Sep 12: starting with the 1 st available staves	Feb – Mar 13: Completion
Final tests and commissioning	Sep 12	Jul 13: IBL Installation
Pit Installation	July 13	Mar 14

25 Collected charge [kilo electrons] 250µm pixel data (this work) 20 300µm strip data (Casse et al.) ł 140µm strip data (Casse et al.) 15 ŧ. 10 ē 0<u>0</u> 200 400 600 800 1000 1200 1400 1600 Voltage [-V] Am ToT vs HV TOT (BC) 3 Bon_FBK4_08 2 Bon FBK4 09 Ge_FBK4_13 Ge_FBK4_12 1 Ge_FBK4_12, 1.0ke Threshold Ge_FBK4_09 Irrad 2 10^15 electrodes 0 0 20 10 30 40 50 60 p-active edge **Bias VOltage (V)**

✓ Charge collection Planar

Charge collection Am in 3D

Sample	Fluence	ID	Al Board Temp(C)	HV(V)	Ι(μΑ)	Thers hold (e)	Tilt Angle	Tracking Efficiency (%)	Charge Sharing (%)
PPS 200µm Slim Edge	n/a	40	-14	-100		2700	0	99.9/99.9	15/73.3
3D-CNM	n/a	55	-14	-20	0.7	1200	0	99.5/99.6	24/37.9
PPS 200μm Slim Edge	p-5E15	60	-14	400/60 0/800	324/29 0/555	1300	0	Data unusable (too high rate in Telescope)	
PPS 200µm Slim Edge	p-6E15	61	-36	-1000	160	1400	15	96.9	43.9
		61	-26	-800	260	1400	15	93.7	28.9
		61	-36	-600	57	1400	15	86.7	7.0
PPS 250µm Slim Edge	n-3.8E15	LUB2	-36	-1000	74	1100	15	99.0	43.5
		LUB2	-26	-800	100	1100	15	98.7	9.7
		LUB2	-36	-600	28	1100	15	97.8	14.1
		LUB2	-26	-400	40	1100	15	95.7	12.2
3D-CNM	p-5E15	34	-14	-140	150	1300	0	96.1/97.5	9.4/9.9
3D-CNM	p-6E15	97	~-36	-140	30	2950	15	97.4	22.1
3D-CNM	n-5E15	82	~-36	-160	27	2700	15	89.4	11.3
3D-FBK	p-5E15	87	~-36	-140	35	2450	15	95.3	39.5
3D-FBK	p-2E15	90	~-36	-160	34	3100	15	99.8	59.9

Off-detector

- FE-I4 voltage regulators proposed to be set in partial shunt mode to guarantee a minimal current.
 The goal is to limit transient voltage excursion.
- First complete prototype of optobox in October
- **ROD fabrication has started**: 2 prototypes expected by next month
- ROD firmware design is ongoing
- The design of a full DAQ chain simulation environment has started
- BOC: prototypes expected by September, then testing and redesign until the end of the year
- **RX plugin: investigation underway** to use commercial SNAP12 modules
- Grounding & Shielding concept is now integrated into the whole IBL detector

BOC block

