

RD11, 10th International Conference on Large Scale Applications and Radiation Hardness of Semiconductors Detectors

Results from the NA62 Gigatracker Prototype: a Low Mass and sub-ns Time Resolution Silicon Pixel Detector

Sara Garbolino^{1,2} email: garbolin@to.infn.it

1 INFN Sezione di Torino, Italy 2 Università di Torino, Dip. di fisica sperimentale, Italy

GTK Working Group

· CERN

G. Aglieri Rinella, A. Cecucci, J. Daguin, M. Fiorini, P. Jarron, J. Kaplon, A. Kluge, A. Mapelli, M. Morel, M. Noy, L. Perktold, P. Petagna, P. Riedler

- University and INFN Torino (Italy)
 G. Dellacasa, S. Garbolino, F. Marchetto, S. Martoiu, G. Mazza, A. Rivetti, R. Wheadon
- University and INFN Ferrara (Italy)
 V. Carassiti, S. Chiozzi, A. Cotta Ramusino, R. Malaguti,
 F. Petrucci, M. Statera, H. Wahl
- Catholic University of Luvain (Belgium)
 E. Cortina, E. Martin, G. Nuessle, B. Velghe

Outline

- NA62 experiment at CERN SPS
- The Gigatracker (GTK)
 - Detector system
 - · Requirements from the experiment
- Timing techniques
- Two complementary solutions:
 - · Read-out chip architectures
 - Prototypes test results
- Conclusions and outlook

Context of the Work

- NA62 experiment at the CERN SPS accelerator
- · 8.10^8 particles/s, 75 GeV/c
- · Ultra-rare decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
- Theoretically very clean: $|V_{td}|$ CKM (Cabibbo-Kobayashi-Maskawa) matrix can be related to the measured quantity
- It aims to measure 80 events with a branching ratio of $(8.5\pm0.7) \times 10^{-11}$ (SM prediction) and ~10% background
- Existing measurement based on 7 events (E787/E949): BR= $(1.73_{-1.05}^{+1.15}) \times 10^{-10}$

Experimental Setup

8th July 2011, Florence

- · 3 GTK stations
- Single silicon sensor (60mm x 27mm x 200µm)
- · 2 x 5 read-out chips
- Support and alignment structure outside the beam area

Read-out Chip Specifications

- · $\Delta |P_{\kappa}|/|P_{\kappa}| \sim 0.3\%$, $|P_{\kappa}| = 75$ GeV: 300µm x 300µm pixels
- Time resolution of 200ps (rms) on the single station (3 stations $\rightarrow 200/\sqrt{3}=115$ ps): jitter, digitization and time walk
- Efficiency > 99%: 1fC threshold
- Dead time < 1%: max event rate of 150kHz/ch
- Power consumption < 2mW/ch
- Radiation tolerance: SEU and integral dose deterioration of the sensor

Jitter

signals with constant rising time and different amplitudes

8th July 2011, Florence

Time walk correction is based on an algorithm derived from the correlation between the pulse width and the experienced time walk. In this case two time measurements (rising and falling edge) are performed

Constant Fraction Discriminator

$$y(t) = \frac{At}{t_{p}}$$

$$y(t-t_{d}) = fy(t)$$

$$\frac{A(t-t_{d})}{t_{p}} = \frac{fAt}{t_{p}}$$

$$t = \frac{t_{d}}{(1-f)}$$

$$Hypothesis: crossing point always on the linear rising portion of the input signal$$

$$H_{disor}(s)$$

$$H_{disor}(s)$$

$$C discriminator$$

8th July 2011, Florence

Sara Garbolino

r

EoC Architecture

8th July 2011, Florence

TDC per Pixel Architecture

- CFD: online correction of time walk
- local approach: 1800 TDCs

8th July 2011, Florence

Sara Garbolino

14

 10^6 random test pulses to the 7-bits TDC: N_{th} = $10^6/2^7$

→ -0.5 < DNL(i) =
$$\frac{N_{exp}(i) - N_{th}(i)}{N_{th}(i)} < 0.5$$
→ -1 < INL(i) = Σ^k_{i=0} DNL(i) < 1

TDC Linearity (2)

8th July 2011, Florence

Jitter

Jitter of ~90ps rms at 2.4fC measured at the output of matrix pixels

92ps rms time resolution measured at the oscilloscope on the test pixel with the clock switched off

CFD (1)

CFD (2)

EoC Demonstrator

EoC Demonstrator Test results

Laser Test

- Electronic noise from front-end chip ~180e⁻ (ENC) with sensor
 - IR light (1060nm) to reproduce minimum ionizing particles
 - Jitter of ~70ps rms at 2.4fC (<u>charge injected</u> <u>at the pixel center</u>)

٠

٠

EoC Demonstrator Test results

Beam Test (1)

- Beam test at CERN T9 (10GeV/c π^+ and p)
- 4 consecutive GTK planes
- fast scintillators used as time reference

measured time resolution of \sim 175ps σ at 300V of sensor bias voltage

•

Contributions to Timing Error (1)

Applying to any pixel front-end

Electronic noise from front-end chip

Impact position on pixel sensor: geometrical border effects

 Energy straggling in the sensor bulk: non uniform charge release along the sensor thickness

8th July 2011, Florence

٠

٠

Contributions to Timing Error (2)

- Jitter: ~70ps rms @ 2.4fC
- ~85ps rms of variation of measured time with impact position inside the pixel (laser measurements)
- ~60ps rms from Geant simulations of charge straggling

$$\sqrt{70^2+85^2+60^2}$$
~125ps rms

•

Conclusions and Outlook

- Extensive measurements (electrical, laser and beam tests) performed on prototype GTK bump-bonded assemblies
- · A time resolution of \sim 175ps rms has been measured with minimum ionizing particles at 300V with EoC demonstrator
 - For the TDC per pixel prototype the CFD has shown an intrinsic resolution of ~90ps rms, while a full system resolution higher than 500ps was measured at the beam test due to identified internal digital noise
- Also due to the tight schedule of the experiment the NA62 collaboration decided to adopt as baseline solution the EoC architecture
- One more prototype of TDC per pixel under development as a possible backup/upgrade solution

•

Physics Motivations

$$BR(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = 6r_{k^{+}}BR(K^{+} \rightarrow \pi^{0}e^{+}\nu) \frac{|G_{|}|}{|G_{F}|^{2}|V_{us}|^{2}}$$
$$G_{F}^{-2}|V_{us}|^{2}$$
$$G_{F}^{-2}|V_{us}|^{2}$$
$$G_{F}^{-2}\pi \sin^{2}\Theta_{W}^{-2}$$

 $\cdot V_{td}$ theoretical error of ~5-7%

٠

Background Rejection (1)

Decay mode	BR	Background rejection
$K^{*} \rightarrow \mu^{*} \nu$	63%	μ PID, kinematics
$K^{+} \rightarrow \pi^{+} \pi^{0}$	21%	γ veto, kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	charged particle veto, kinematics
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ veto, kinematics
$K^{+} \rightarrow \pi^{0} \mu^{+} \nu$	3%	γ veto, μ PID
$K^{+} \rightarrow \pi^{0} e^{+} \nu$	5%	γ veto, E/p

Background Rejection (2)

- Region I: $0 < m_{miss}^2 < m_{\pi^0}^2 (\Delta m)^2$
- Region II: $m_{\pi^0}^2 + (\Delta m)^2 < m_{miss}^2 < min[m_{miss}^2(\pi^+\pi^+\pi^-)]$

Background Rejection (3)

$$m_{\text{miss}}^{2} = m_{\text{K}}^{2} (1 - \frac{|\mathbf{P}_{\pi}|}{|\mathbf{P}_{\kappa}|}) + m_{\pi}^{2} (1 - \frac{|\mathbf{P}_{\kappa}|}{|\mathbf{P}_{\pi}|}) - |\mathbf{P}_{\kappa}||\mathbf{P}_{\pi}|\theta_{\pi \text{K}}^{2}$$

·
$$\Delta |P_{\kappa}|/|P_{\kappa}| \sim 0.3\%$$
, $|P_{\kappa}| = 75 \text{ GeV}$

·
$$\Delta |P_{\pi}|/|P_{\pi}| \sim 1\%$$
 at 30 GeV

· $\Delta \theta_{\pi K} \sim 50-60 \mu rad$

•
$$(\Delta m^2_{miss}) \sim 8 \times 10^{-3} \text{ GeV}^2/\text{c}^4$$

GTK

300μm x 300μm pixel

~ 100 ps time resolution due to high particle rate (60MHz/cm²)

Substrate Noise

