

10th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors

Offline calibration and performance of the ATLAS Pixel Detector

Attilio Andreazza INFN and Università di Milano *for the ATLAS Collaboration*

- The ATLAS Pixel Detector
- Efficiency
- Resolution
- Detector properties
 - Lorentz angle
 - Energy loss measurement

...and what you do with all that

No alignment and tracking performance S. Marti's talk later today No radiation damage issue

S. Gibson's talk on Friday

Introduction:

- Pixel Detector layout
- Module concept

THE ATLAS PIXEL DETECTOR

The ATLAS Pixel Detector

- Three barrel layers:
 - R= 5 cm (Layer-0), 9 cm (Layer-1), 12 cm (Layer-2)
 - modules tilted by 20° in the R¢ plane to overcompensate the Lorentz angle.

Two endcaps:

- three disks each
- 48 modules/disk
- Three precise measurement points up to $|\eta| < 2.5$:
 - $R\Phi$ resolution:10 μ m
 - η (R or z) resolution: 115 μ m
- 1456 barrel modules and 288 forward modules, for a total of 80 million channels and a sensitive area of 1.7 m².
 - Environmental temperature about -13 °C
 - 2 T solenoidal magnetic field.

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Module overview

• Sensor

- 47232 n-on-n pixels with moderated p-spray insulation
- $-250 \,\mu m$ thickness
- $-50 \ \mu m \ (R\Phi) \times 400 \ \mu m \ (\eta)$
- 328 rows (x_{local}) × 144 columns (y_{local})

• 16 FE chips

- bump bonded to sensor
- Flex Hybrid
 - passive components
 - Module Controller Chip to perform distribution of commands and event building.
- Radiation-hard design:
 - Dose 500 Gy
 - NIEL $10^{15} n_{eq}/cm^2$ fluence

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Mapping the detector

- Noise maps
- Inefficiency maps

Putting all in MC and use it reconstruction (*p*-*p* and Pb-Pb)

EFFICIENCY

Offline calibration

- "Calibration loop"
 - first pass reconstruction of a subset of physics and calibration data
 - calibration
 - noise maps (per fill)
 - dead channels (~monthly)
 - charge sharing
 - reconstruction of bulk of data

Dedicated calibration stream:

- random trigger on empty LHC bunches
- 10 Hz rate
- 29 kB/event

→ Express stream:

~10 Hz of physics trigger

Run number

- Mask noisy channels from reconstruction:
 - occupancy >1-5×10⁻⁵ hit/BC
 - typically 300-1500 channels masked offline
- Noise rate in bulk reconstruction
 - <0.2 hits/event
 (compared to few hundreds in collisions)

A. Andreazza – ATLAS Pixel Detector Performance

7

Where efficiency matter most!

- Intrinsic efficiency measured with cosmic rays and in test beams almost 100%.
- This is also confirmed in operation.
- Innermost layer is most critical:
 - Impact parameter resolution is significantly worse is lowest R measurement is missing.
 - It is effectively use to discriminate primary and secondary particles:
 - e/γ separation
 - Soft-QCD studies
 - Heavy-ion reconstruction

Heavy-Ion performance

- To reduce fake tracks in busy HI environments (~10000 tracks) no "holes" allowed in Pixel Detector
 - Correct mapping of inefficiency is critical
- Pixel-only tracking powerful for counting very low momentum tracks:
 - 3-points tracks
 - Vertex+2-points tracks
 - Very different efficiency correction.
- Excellent modeling in simulation.

INFN

9

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Calibration of charge interpolation

Width of track-hit residuals

...and how to make an *hadro*graphy of the detector

RESOLUTION

- Point resolution can be improved using the pulse height measurements.
- Charge sharing variables:

$$\Omega_x = \frac{Q_{\text{last row}}}{Q_{\text{first row}} + Q_{\text{last row}}}$$

$$\Omega_{y} = \frac{Q_{\text{last column}}}{Q_{\text{first column}} + Q_{\text{last column}}}$$

- Cluster position correction: $(x_c, y_c) \rightarrow$ $\left[x_c + \Delta_x (\Omega_x - 1/2), y_c + \Delta_y (\Omega_y - 1/2) \right]$
- The parameters Δ_x , Δ_y :
 - depend on cluster size and incident angle
 - determined from dependence of uncorrected residuals on Ω_x , Ω_y

INFN

 10th International Conference on Large Scale Applicationa

 and Radiation Hardness of Semiconductor Detectors, RD11 –

 Firenze, 6 July 2011

A. Andreazza – ATLAS Pixel Detector Performance

12

Hadro-graphy

6000

4000

2000

Material mapping usually performed by photon conversions

- Hadronic interactions can reach a better position resolution:
 - larger opening angle
 - $-\sigma = 160 \ \mu m$ at Layer-0
- Very accurate detector mapping!
- Applications:
 - Average λ_{I} measurement
 - Positioning of non-sensitive material (beam pipe, support structures)

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors. RD11 -Firenze, 6 July 2011

- Lorentz angle
- Energy loss measurement

DETECTOR PROPERTIES

Lorentz angle

- Drift in silicon is affected by E×B effect
- Charge is (de)focused along the Lorentz angle direction:

 $\tan \alpha_{L} = \mu_{H} B$

- Point displacement $\approx 30 \ \mu m$ for pixels
- Measurement using cluster size vs. incidence angle α:

cluster size = $a(\tan \alpha - \tan \alpha_L) + b / \sqrt{\cos \alpha}$

Data sample	$\alpha_{\rm L}$ [°]	
Cosmic rays	11.77±0.03 ^{+0.13} -0.23	
$\sqrt{s} = 900 \text{ GeV}$	12.12±0.15	Preliminary, only stat. uncertainty
$\sqrt{s} = 7 \text{ TeV}$	12.11±0.09	

Difference due to temperature!

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Lorentz angle: T dependence

- The cooling system was commissioned in 2008.
- Since 2009 operation at nominal settings.
- The different operational point allows to measure T dependence of Lorentz angle

...but nice it can be observed

Parameterization:

C. Jacoboni et al., Solid-State Electronics 20 (1977) 77-89. T. Lari, ATL-INDET-2001-004

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 -Firenze, 6 July 2011

A. Andreazza – ATLAS Pixel Detector Performance

I N F N

Specific energy loss measurement

- ToT charge measurement well modeled by MC simulation:
 - from cosmic ray data:
 - $\frac{Q_{\text{data}}}{Q_{\text{MC}}} = 0.986 \pm 0.002 \text{ (stat.)} \pm 0.030 \text{ (syst.)}$
- Since typically a track has three **pixel hits**, they can be combined to provide a **dE/dx measurement**:
 - remove clusters near module edges or in the ganged region;
 - use truncated mean, discarding the cluster with highest energy deposit.

Suppress most Landau tails.

• Resolution of 11% measured on the relativistic plateau

18

dE/dx at work

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Applications: R-hadron searches

- Direct application of dE/dx measurement is the search for new particles:
 - high mass
 - long-lived
 - charged
- Example: R-hadrons
 - **colourless** states predicted in some SUSY models, composed by stable squarks and gluinos and ordinary particles
- **Signature:**
 - High- p_T tracks with high energy loss
 - Combination with time-of-flight measurement by calorimeters.
- **Exclusion limits** 294 GeV $m_{\tilde{h}}$ at 95% CL: 309 GeV $m_{\tilde{\tau}}$

562 GeV $m_{\tilde{\sigma}}$

m_{Pixel} [GeV]

Conclusions

• Full detector characterization performed:

- Mapping of inefficiencies
- Calibration of charge sharing
- Lorentz angle measurement and its temperature dependence
- dE/dx measurement with 11% resolution
- Material estimation
- Excellent performance:
 - noise occupancy rate $O(10^{-10})$
 - track association efficiency at 99% level
 - Resolution near to nominal
- Pixels in ATLAS physics publications:
 - Electron and photons
 - Heavy long-lived charged particles
 - Particle multiplicity in heavy ion collisions

BACKUP

Firenze, 6 July 2011

- Fast charge amplifier with constant current feedback.
- Fast discriminator with tunable threshold (7-bit DAC)
- Storage of hits during the trigger latency time in 64 "End of Column" memory buffers for each column pair of 2×160 pixels

Pixel types

• For ganged pixels, the spacing in the inter-chip region and in the chip-edge regions are different: for multiple-pixel clusters it is possible to disentangle in which region it was generated.

10th International Conference on Large Scale Applicationa and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

Monitoring

and Radiation Hardness of Semiconductor Detectors, RD11 – Firenze, 6 July 2011

20 June 2011

Pixel Detector Status

- 96.8% of the detector active in data taking
 - 55 Modules disabled (3.2%)
 (6 modules due to a single opto-board failure)
 - 47 FE chips disabled (0.16%)
 - In particular failures are linked to thermal cycles
 - → an attempt has been made to reduce the problem by smaller temperature variations with first modest results, more refinements will be tried
 - The percentage of disabled modules grew from 2.1% to 3.2% in 3 years of operations

Inactive fraction per layer:

B-layer	3.1 %
Layer 1	1.4 %
Layer 2	4.6 %
Endcap A	2.8 %
Endcap C	2.8 %

INFN Istituto Nazionale di Fisica Nucleare