Extremely fine-grained Electro Magnetic Calorimeter

fine grained calorimetry

• why

- 1. shower shape analysis for PID
- 2. particle flow: need to track particles
- 3. separate π^0 decay photons from direct photons
 - example at 3 m

fine grained calorimetry

• why

- 1. particle flow: need to track particles
- 2. shower shape analysis
- 3. separate π_0 decay photons from direct photons
- what
 - lateral 1 mm, longitudinal 1 X_0
 - small Moliere radius \rightarrow compact, W + silicon
- many channels
 - only feasible with digital calorimetry, i.e. particle counting
 - particle density 10³ mm⁻²
 - may need even more, smaller pixels!

100 GeV π^0 GEANT simulation 0.1 mm pixels, 24 layers 1.14 X_0

2

1.5

0.5

0

-0.5

-1

-1.5

-2∟ -2

Y (cm)

RD11

X (cm)

RD11

Y (cm)

X (cm)

GJN24

RD11

- $\ensuremath{\textcircled{\odot}}$ solves the connection problem between sensor and front-end
- Short input connections -> extremely low noise: tens of electrons
 1 MIP = 80 e/h-pairs per micron
- ⊗ high power density in sensor: dark current, cooling
- ☺ relatively slow -> not selftriggering
- ⊗ charge collection
- ⊗ radiation tolerance
- ⊖ thin active layer
- ③ intense development at several places, like RAL, IPHC, CERN

an implementation in 0.35 AMS: MIMOSA26

21.5 mm

- "rolling shutter" readout
 - 115 µs per frame
 - 115 µs charge integration
- row-wise discrimination
- built-in zero suppression

sketch of a tungsten + MAPS calorimeter

- digital areas of chips are dead -> need overlap
- each layer is composed of two rotated halflayers
- W is good heat conductor
 - glue chips directly on it
 - cool from the sides: 1 K/W

a design for one halflayer

Al+kapton flex can be bonded directly on chip

MAPS data volume

- 1. total silicon area 24 layers of 1 m² \sim 24 m² \rightarrow 10¹⁰ pixels \rightarrow 10 Gbit eventsize
- 2. rolling shutter provides full frame every 20 μ s \rightarrow 0.5 PB/s
- technical feasibility
 - 2 kHz full read-out, see next slide

MAPS data volume, an estimate

- 1. total silicon area 24 layers of 1 m² \sim 24 m² \rightarrow 10¹⁰ pixels \rightarrow 10 Gbit eventsize
- 2. rolling shutter provides full frame every 20 μ s \rightarrow 0.5 PB/s
- 3. data reduction
 - a. select/compress locally, in layer or chips
 - zero suppress depends on occupancy, high for chips at core of the shower
 - *b.* selection at end of tower (16 chips per layer)
 - transport only frames with trigger
 - c. outside

high speed cabling, fibers combine frames

locally, bandwidth need remains high because of high particle density in shower

> different from tracker application

suppose we can measure this, what can we do with it?

geometrical resolution

easy to find peakposition to submillimetre, what about energy?

energy measurement "vide-pomme"

- cut out cylinder along shower axis
- count hit pixels for *energy measurement*

simulations for single photons with different cylinder radii

energy resolution

Fine grained EM Calorimeter

"real" prototype

- uncertainties in simulation
 - small angles
 - low energy particles
 - thin sensor, charge collection (not simulated here)
- build prototype and test with beam
 - need sensor size compatible with $R_{\rm M}$
 - enough layers to study longitudinal shower development
 - based on available MAPS sensors
 - most are too small, like TPAC, many MIMOSA
 - all have pixel < 50 μ m
 - ➤ take PHASE1 from IPHC

Beam test prototype objectives

• YES:

- proof-of-principle
 - resolution
 - Moliere radius
- technology demonstrator
 - manage read-out at GB/s
 - cooling
 - integration
 - overlap, needed because of dead zones
- collect data for study of
 - data volume/flow, data reduction
 - pixel size
- NO:
 - final chip (too slow)
 - rad hard
- may help in
 - detector simulation

prototype features

- 24 layers 3 to 4 mm W
- PHASE1/MIMOSA23
 - 640 * 640 pixels, 30 µm pitch
 - high resistivity (400 Ωcm) epilayer, 15 and 20 μm
 - 1 MHz rolling shutter \rightarrow 640 µs integration time
 - 160 MHz read-out clock
 - no data reduction on board
 - radiation tolerance < 1 Mrad
- thinned to 120 µm
 - total sensor layer thickness ~1 mm
 - estimated $R_{\rm M}$ < 15 mm
- 4 PHASE1 per layer:
 - 4 * 4 cm² active area
 - overlap dead areas
- full read-out

some details

Tungsten (1500um thick)

idea of direct gluing to W discarded:

- what to do with broken chips?
- need thin flex development
- use intermediate carrier (pcb) instead

keep small overlap 100 µm

beam test prototype

- 4 PHASE1 per layer: 24 * 4 cables from tower to read-out
- total 61 Gb/s
- several FPGA's to manage this: keep only 2 frames per trigger big local buffer storage small duty factor of PS/SPS

electron beam

- CERN PS Nov 2011
- CERN SPS 2012

read-out electronics (one half)

Fine grained EM Calorimeter

summary, outlook

EM calorimeter with fine sampling and pixel counting is within reach

> would open new possibilities for particle identification

- uncertainties in simulations
 - shower development on this scale
 - importance of low-energy particles
 - charge collection
- prototype under construction (Utrecht/Nikhef, Bergen)
 - extremely fine pitch
 - full data read-out
 - very small Moliere radius
- an option for future forward calorimeter in ALICE

digital calorimetry

Richard Wigmans at EDIT2011 "was tried and abandoned in 1983, for good reasons: particle density in the core of EM showers is very high"

non-linearity

Paul Dauncey at ICHEP 2010 "improved resolution"

– beware: GEANT not tested at ${\sim}50~\mu m$ scale

simulation for CALICE ECAL

issues

- pixel size:
 - current designs \approx 20 μ m
 - 50 .. 100 µm sufficient?
 - charge collection?
- trigger:
 - too slow for self triggering
 - need separate fast detector
 - S fast Si or scintillator at around shower maximum

- power consumption:
 - currently $\approx 100 \text{ mW/cm}^2 \text{ sensor}$
 - more functions \uparrow
 - newer technology \checkmark
- integration time:
 - pixel charge is integrated until next read-out
 - maximise rollingshutter speed
 - technology limit ~0.2 $\mu s/row$
 - shorter columns

shapes for γ and π with equal deposited energy (~10 GeV γ)

MAPS half layer

multilayer PCB

- is substrate for PHASE1
- connects bondwires to macroscopic world
- components for power regulation and filtering
- clock and signal at 160 MHz
- has connector for chiptesting, to be replaced by flatcable for read-out