Performance of the ALICE Inner Tracking System and studies for the upgrade

Giacomo Contin Universita' degli Studi di Trieste & INFN Sezione di Trieste

On behalf of the ITS collaboration in the ALICE experiment at LHC

Summary

- System overview and tasks
- Hardware features
- Physics performance in p-p and Pb-Pb
- Outlook on the ITS upgrade plans

The ALICE experiment

Dedicated heavy ion experiment at LHC

- Study of the behavior of strongly interacting matter under extreme conditions of high energy density and temperature
- Proton-proton collision program
 - Reference data for heavy-ion program
 - Genuine physics (momentum cut-off < 100 MeV/c, excellent PID, efficient minimum bias trigger)

Barrel Tracking requirements

- ▶ Pseudo-rapidity coverage |**η**| < 0.9
- Robust tracking for heavy ion environment
 - Mainly 3D hits and up to 150 points along the tracks
- Wide transverse momentum range (100 MeV/c - 100 GeV/c)
 - Low material budget (13% X₀ for ITS+TPC)
 - Large lever arm to guarantee good tracking resolution at high p_t

PID over a wide momentum range

 Combined PID based on several techniques: dE/dx, TOF, transition and Cherenkov radiation

The ALICE Inner Tracking System

The ITS tasks in ALICE

- Secondary vertex reconstruction (c, b decays) with high resolution
 - Good track impact parameter resolution
 < 60 μm (rφ) for p_t > 1 GeV/c in Pb-Pb
- Improve primary vertex reconstruction, momentum and angle resolution of tracks from outer detectors
- Tracking and PID of low p_t particles, also in stand-alone
- Prompt L0 trigger capability <800 ns (Pixel)</p>
- Measurements of charged particle pseudo-rapidity distribution
 - First Physics measurement both in p-p and Pb-Pb

Detector requirements

- Capability to handle high particle density
- Good spatial precision
- High efficiency
- ▶ High granularity (≈ few % occupancy)
- Minimize distance of innermost layer from beam axis (mean radius ≈ 3.9 cm)
- Limited material budget
- Analogue information in 4 layers (Drift and Strip) for particle identification in 1/β² region via dE/dx

The ITS parameters

Layer	Det.	Radius Lei (cm) (c	Length (cm)	Surface (m2)	Chan.	Spatial precision (mm)		Cell (µm2)	Max occupancy central PbPb	Material Budget	Power dissipation (W)	
						rφ	z		(%)	$(\% X/X_0)$	barrel	end-cap
1		3 .9	28.2	0.21	9.8M	12	100	50x425	2.1	1.14	1.35k	30
2	SPD	7.6	28.2						0.6	1.14		
3	CDD	15.0	44.4	1.01	133	25	25	202-204	2.5	1.13	1.071-	1.751-
4	SDD	23.9	59.4	1.31	K	30	25	202X294	1.0	1.26	1.06K	1./SK
5	SSD	38.0	86.2	5.0	2.6M	20	830	95x40000	4.0	0.83	- 850	1.15k
6		43.0	97.8						3.3	0.86		

06/07/2011

SPD - Silicon Pixel Detector

Ð,

 \approx

Half-barrel:

outer surface

Half-stave

Radius

(cm)

3.9

7.6

40

80

2

2

80

160

Layer

1

2

2 layers of pixels grouped in 2 half barrels mounted face to face around the beam pipe

✓ Material	budget per	laver ~1	% X

SDD - Silicon Drift Detector

Layer	Radius (cm)	# ladders	Mod./ladder	# modules	
3	15.0	14	6	87	
4	23.9	22	8	176	

Front-end electronics (4 pairs of ASICs)

- Amplifier, shaper, 10-bit ADC, 40 MHz sampling
- Four-buffer analog memory

SSD - Silicon Strip Detector

Layer	Radius (cm)	# ladders	Mod./ladder	# modules
5	38.0	34	22	748
6	43.0	38	25	950

Hybrid:identical for P- and N-side Al on polyimide connections 6 front-end chips HAL25 water cooled

> Sensor: double sided strip: 768 strips 95 um pitch P-side orientation 7.5 mrad N-side orientation 27.5 mrad

carbon fibre supportmodule pitch: 39.1 mmAl on polyimide laddercables

End ladder electronics

Tracking strategy and performance

"Global"

- 1. Seeds in outer part of TPC @lowest track density
- 2. Inward tracking from the outer to the inner TPC wall
- 3. Matching the outer SSD layer and tracking in the ITS
- 4. Outward tracking from ITS to outer detectors \rightarrow PID ok
- 5. Inward refitting to ITS \rightarrow Track parameters OK

"ITS stand-alone"

- Recovers not-used hits in the ITS layers
- Aim: track and identify particles missed by TPC due to p_t cut-off, dead zones between sectors, decays
 - p_t resolution <≈ 6% for a pion in p_t range 200-800 MeV/c
 - > p_t acceptance extended down to 80-100 MeV/c (for π)

Vertex reconstruction

Vertex from SPD tracklets

Procedure:

- > "SPD Vertex" from all possible pairs of 2 aligned hits, in a fiducial window (in ϕ , η)
- "SPD tracklet" defined by a pair of hits aligned with the reconstructed vertex

Used to:

- > Monitor the interaction diamond position quasi-online
- > Initiate barrel and muon arm tracking
- > Measure charged particle multiplicity
 - > High efficiency & poorer resolution
 - Vertex spread distribution in p-p: comparison of the two methods
 - The asymptotic limit estimates the size of the luminous region, seen for the vertices reconstructed with tracks.

Vertex from reconstructed tracks

Procedure:

More accurate second reconstruction of interaction vertex from tracks in the barrel

Used to:

- > Reconstruct secondary vertices
- > Estimate the vertex resolution
 - > Poorer efficiency & high resolution

Vertex reconstruction: Resolution

Vertex resolution in Pb-Pb collisions at $\sqrt{s} = 2.76$ TeV as a function of half of the tracklets multiplicity of the event

ALI-PERF-3886

Vertex resolution estimation in Pb-Pb

Method to evaluate resolution on the vertex position:

- The track sample is randomly divided into two
- A primary vertex is reconstructed for each of the sub-sample
- The resolution is extracted from the σ of the distribution of the residual between the two vertices
- The resolution is extrapolated for most central (5%) Pb-Pb collisions

ITS Performance: Impact parameter resolution

- The transverse impact parameter in the bending plane: d₀(rφ) is the reference variable to look for secondary tracks from strange, charm and beauty decay vertices
- Impact parameter resolution is crucial to reconstruct secondary vertices : below 75 μ m for p_t > 1 GeV/c

- The material budget mainly affect the performance at low p_t (multiple scattering)
- The point resolution of each layers drives the asymptotic performance
- ITS standalone enables the tracking for very low momentum particles (80-100 MeV/c pions)

ALI-PERF-2731

13

Impact parameter in p-p, global and ITS standalone

14

ITS Performance: Particle Identification

The dE/dx measurement:

- Analogue read-out of four deposited charge measurements in SDD & SSD
- Charge samples corrected for the path length
- Truncated mean method applied to account for the long tails in the Landau distribution

The PID performance:

- PID combined with stand-alone tracking allows to identify charged particles below 100 MeV/c
- p-K separation up to 1 GeV/c
- K- π separation up to 450 MeV/c
- A resolution of about 10-15% is achieved

G. Contin - RD11 06/07/2011

16

ITS Upgrade

Physics Motivations and Simulations Studies

The main physics goals for the ITS upgrade:

- improve the charmed baryonic sector studies
- access the exclusive measurement of beauty hadrons

They can be achieved by:

- improving the impact parameter resolution by factor 2-3 to identify short displaced secondary vertices
- implementing a topological trigger functionality
- exploiting PID in the trigger down to lower p_t

ITS Upgrade - Technical goals

➢ Reduce beam-pipe radius from 30 mm to ~20 mm

- >Add a Layer 0 at ~20-22 mm radius (now SPD1 at 39 mm)
- > Reduce **material budget** in the first layers from 1.1 to 0.5% X₀
 - > Reducing mass of silicon, power and signals bus, cooling, mechanics
 - Using Monolithic Pixels
- > Reduce the **pixel size** to the order of 50 x 50 μ m² (425 x 50 μ m² at present)
 - Main improvement in z
 - Main impact on medium / high p_t particles
- Reduce the number of detector technologies
 - 3 pixel layers followed by 3-4 pixel/strip layers
 - homogeneous output data format/read-out system
- Trigger capability (L2 ~ 100us): topological trigger, fast-OR and fast-SUM

ITS Upgrade - Technology Implementation

Considered detector technologies:

Hybrid pixels

- 100 μm sensor + 50 μm ASIC
- 30 µm x 100 µm pixels
- Monolithic pixels
 - 50 μm ASIC
 - 20 μm x 20 μm pixels

Silicon strips

- half-length strips
- ADC on-chip

Requirements:

- increased spatial resolution
- readout time < 50 μ s
- radiation tolerant (2 Mrad, 2x10¹³ n_{eq})
- low power design (250 mW/cm²)
- minimized material budget

New design advantages:

- occupancy ~ 50% \rightarrow lower radii
- better ambiguity resolution
 - increased S/N ratio \rightarrow better PID
 - digital output and faster read-out

... to be implemented in view of the 2017-2018 LHC shutdown!

Conclusions

- The ALICE Inner Tracking System performance is well in agreement with the design requirements
- Track and vertex reconstruction is in good agreement with Monte Carlo simulations
- The achieved impact parameter resolution allows to reconstruct the charmed decay secondary vertices
- Standalone capability allows to track and identify charged particles with momenta down to 100 MeV/c
- The studies for a possible upgrade to improve the physics performance of the ITS are in an advanced stage

Thanks for your attention

BACKUP SLIDES

G. Contin - RD11 06/07/2011

21

SDD calibration

22

.

Calibration

SSD calibration

The measured *intrinsic noise* of the 2.6 million SSD channels is used to: assess the detector efficiency guarantee the required signal-to-noise ratio **Online Calibration** monitor the SSD stability Average noise vs time Noise> [ADC] - p-Side n-Side Intrinsic noise: time evolution Cluster charge distribution measured from collision data with all the SSD modules the *gain* can be calibrated at the module level 0 115000 116000 117000 118000 119000 120000 Run number **ALICE** Performance 10^{2} Gain map tuning: after the calibration, p+p at √s = 7 TeV the MPVs are stable within a few % ALICÉ ALICE Performance 10 p+p at $\sqrt{s} = 7TeV$ 1600 400 600 800 1000 1200 1400 600 800 1000 1200 1400 SSD module number Module number

Layer 5

Bad Channel Map

Layer 6

ALI-PERF-8908

200

Charge (arb. units) ²⁰⁰ ²

100

50

ALI-PERF-8900

Centrality

