

SILICON STRIP DETECTORS FOR THE ATLAS HL-LHC UPGRADE

Jose Bernabeu (IFIC)

on behalf of the ATLAS Upgrade Community

• Phase 0

 New beam pipe with additional pixel layer (IBL)

• Phase 1

• Possible pixel replacement under study

• Phase 2

- Replace inner tracker
- All silicon, pixel + strips

NEW ATLAS INNER TRACKER

Pixels

Short strips

Long Strips

End-Cap

- Higher Occupancy
 - Higher granularity

SHORT STRIP (2.4 cm) μ -strips: r = 38, 50, 62 cm Up to 1.2 x 10¹⁵ 1MeV n_{eq}/cm² LONG STRIP (4.8 cm) μ -strips : r = 74, 100 cm Up to 5.6 x 10¹⁴ 1MeV n_{eq}/cm² • Higher Radiation

3

07/07/2011 Jose Bernabeu – IFIC (Instituto de Fisica Corpuscular)

BARREL STRIP INTEGRATION

BARREL SILICON SENSOR

o n⁺ strips in p substrate

- Electrons collected
 - Faster signal, less trapping
- Depleting from strip side
 Signal under depleted
- Single-sided process
 - Cheaper (in opposition to n⁺n)

• 6" FZ wafer <1 0 0>

- Hamamatsu Photonics (HPK)
- Big sensor: 9.75 x 9.75 cm², 320 µm
- 4 segments, 2.39 cm each
- 1280 channels, 74.5 µm pitch
- Miniature sensors (1 x 1 cm²) for irradiation studies

FULL SIZE SENSOR MEASUREMENTS (PRE-RAD)

Depletion voltage

Parameter	Specification	Measurement
Leakage Current	<200µA@600V	200nA – 370nA
Depletion Voltage	<500V	$190\mathrm{V}-245\mathrm{V}$
Interstrip Capacitance	<1.1pF/cm (3probes)	0.7pF/cm
Coupling Capacitance	>20pF/cm	$24 - 30 \mathrm{pF/cm}$
Polysilicon Resistance	$1.5 \pm 0.5 \mathrm{M}\Omega$	$1.3 - 1.6 M\Omega$
Interstrip Resistance	>10xRbias≈15MΩ	>19G Ω

See J. Bohm, et. al., Nucl. Inst. Meth. A, Vol. 636 (2011) S104-S110 for details

MODULES AND STAVELETS WITH SENSORS

8

MINIATURE SENSOR MEASUREMENTS (POST-RAD)

- Different irradiations
 - Protons, pions, neutrons
- Charge Collection measured in different locations (setups)
- S/N > 15 @ 500V, $10^{15} n_{eq}/cm^2$
- Very good agreement to $10^{16} n_{eq}^{2}/cm^{2}$
 - NIEL equivalences verified

See K. Hara, et. al., Nucl. Inst. Meth. A, Vol. 636 (2011) S83-S89 for details

10

IRRADIATED MODULE

- Irradiated at CERN-PS
 - 24 GeV protons scanning the full module
 o Motorized table (x,y,θ), cooled box
 - Module biased, powered and clocked during irradiation
 - Dose: $1.9 \ge 10^{15} n_{eq}/cm^2$
- Sensor and module:
 - Noise as expected from I_{shot} increase
 - Fully functional module

	Column 0	Column 1
Pre-irrad	610	589
Post-irrad	675	650
Difference	65	61
Expected	670	640

11

CHARGE MULTIPLICATION

- For heavily irradiated n⁺p sensors (>5 x $10^{15} n_{eq}/cm^2$)
 - Increased signal charge with high bias voltage
 - Charge multiplication
- Very high local electric fields
 - Likely due to impact ionisation
 - Thin sensor (140µm) has higher fields and higher multiplication
 - Sensors could be used for higher fluences

See G. Casse, et. al., Nucl. Inst. Meth. A, Vol. 636 (2011) S156-S61 for details

PUNCH THROUGH PROTECTION (PTP)

- In case of beam loss
 - Enormous charge
 - Electric field collapses
 - Large voltage on the implant strip. Al strip grounded by electronics
 Risk of breaking the coupling capacitor

Bias Ring

- PTP structures included in miniature sensors (HPK)
- If $V_{implant} > V_{PTP}$, protection active
- No degradation after radiation
- Effectiveness depends on beam position along the strip
- More studies ongoing

See S. Lindgren, et. al., Nucl. Inst. Meth. A, Vol. 636 (2011) S111-S117 for details

Al strip

n+ implant

12

Cc

p bulk

Backplane

07/07/2011 Jose Bernabeu IFIC (Instituto de Fisica Corpuscular)

13

ENDCAP STRIP INTEGRATION

- Development program based on adapting barrel stave
- 6 rings, 6 different Si sensors !
- Sensors will use same technology as barrel
- Varying pitch (67-106µm)
 - High bonding angles

ENDCAP STRIP PETAL-LET

- Design and fabrication
 - IFIC and CNM
- 4" wafers, integrated half stereo
 - Truncated strips
 - Bias ring at the same distance from the strips
- Double metal for embedded fanins
- Samples ready in October

SUMMARY

- Present ATLAS tracker will be replaced by a new all-silicon tracker.
- Module and stave concepts are progressing well.
- Prototype full size barrel strip detectors have been fabricated (HPK):
 - Final specifications are already met.
 - Modules performing very well.
 - Sensors and modules fully functional after irradiation.
- Miniature sensors:
 - Test of Punch Through Protection (PTP) structures.
 - Charge multiplication observed.
- Endcap strip sensors to be designed.
 - Prototype fabrication ongoing.