

Performance of the CMS Silicon Tracker

Matthew Chan (MIT) On behalf of the CMS Collaboration

June 6, 2011

RD11, Firenze

Outline

- CMS Tracker Overview
- Track Reconstruction and Efficiency
- Primary Vertex Reconstruction
- Track Impact Parameter
- B-Tagging

CMS Tracker

Pixel Detector

66 million channels Pixel size: 100x150 μm² Inner radius: 4.4 cm Outer radius: 10.2 cm

Silicon Strip Detector

9 million channels Silicon area: 200 m² Inner radius: 25.5 cm Outer radius: 1.2 m

Signal to Noise

2010 Signal-to-Noise

- Signal-to-noise: Cluster signal / noise of strips
- Cluster required to be part of a track

Tracker Section	S/N
TIB	19.4
TID	18.5
ТОВ	22.5
TEC+ / TEC- (thin)	19.1 / 19.4
TEC+ / TEC- (thick)	23.4 / 23.9

Hit Resolution

- Hit resolution measured from module overlaps
- Pixel hit resolution ~ $9 35 \,\mu m$
- Strip hit resolution ~ $15 45 \,\mu m$

Track Reconstruction

- Pixel seeding (pair or triplet)
- Kalman filter-based pattern recognition
- Iterative tracking

Track Simulation vs Data

Efficiency from Embedded Tracks

- Embed simulated tracks in real minimum-bias events
- Test if track is still reconstructed
- Measures robustness of tracking against background and noise
- Over 99% for muons and pions

Muon Tracking Efficiency

- "Tag and Probe" with $J/\psi \to \mu \mu$
 - Tag: Muon reconstructed in tracker AND muon chambers
 - Probe: Another muon reconstructed in muon chambers
- Probe muon passes if it matches to a track
- Extract signal yield by applying fit to passing and failing mass distributions
- $\epsilon = N_{match} / (N_{match} + N_{fail})$

Muon Tracking Efficiency Results

Muon efficiency 98-100%, depending on η

Momentum Resolution

- Momentum scale and resolution extracted from J/ψ line shape
- Scale from shift and width
 - ~2 MeV
- Momentum resolution from width
 - 1-3%

Di-Muon Mass Spectrum

Primary Vertex

- Adaptive vertex fit on tracks within 1 cm of each other in z
- PV Resolution
 - "Split Method": Each PV randomly split into two equal groups of tracks
 - Each group of tracks is fit separately and compared
 - For PV with more than 30 tracks, σ ~ 25 μm

Primary Vertex Efficiency

- "Split Method" + tag and probe
- Tracks split in two sets (2/3 tag, 1/3 probe) and fit separately for PV position
- Probe passes if matched within 5 σ_z of original vertex, given that tag also matches
- Efficiency ~ 100% if more than 4 tracks

Track Impact Parameter

- Impact Parameter: Distance of closest approach
- Positive if PV is to the left when looking along trajectory

Track Impact Parameter Resolution

Resolution Measurement

- 1) One track is singled out from PV
- 2) PV position is re-fit with remaining tracks
- 3) Impact parameter is calculated for removed track
- 4) Distribution of impact parameters is fit with double Gaussian: one for PV position uncertainty, one for impact parameter resolution
- For high p_T , resolution is approximately 25 μ m transverse, 40 μ m longitudinal

B-Tagging

- B mesons have relatively long lifetimes
- \Rightarrow Jets from b quarks originate from displaced vertices
- Precise tracking enables the identification ("tagging") of B-Jets

Event Display Showing Two B-Jets

B-Tagging Efficiency

B^o Lifetime and Cross Section

"Litmus Test" of Tracking

We Have a Great Detector!

- Data-driven techniques to measure tracker performance
- Tracker well-modeled by simulation
- Excellent track reconstruction efficiencies and resolution
- Primary and secondary vertex reconstruction from tracks
- Tracker plays an essential role in CMS physics

Backup

dE/dx

Analog readout of strips makes it possible to measure dE/dx

Pion Tracking Efficiency

- Measure pion track efficiency from D₀ decays
 - Ratio of $D_0 \rightarrow K\pi$ to $D_0 \rightarrow K3\pi$
 - 2 vs 4 tracks $\Rightarrow \epsilon_{K\pi} = \epsilon^2$ vs $\epsilon_{K3\pi} = \epsilon^4$

Beam Line Reconstruction

- Beam spot is 3D profile of luminous region
- Position and width measured by likelihood fit on primary vertex positions

Beam Background Rejection

- Beam gas interactions
- High pixel and strip occupancy
- Tracks have small angles with respect to beam line
- Studied by comparing colliding and non-colliding beams
- Requiring high-quality primary vertex rejects nearly all beam gas interactions

