

Silicon Sensor Developments for the CMS Tracker Upgrade

RD11 - 10th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors

> Joachim Erfle University of Hamburg

On behalf of the CMS Tracker Collaboration

Silicon Sensor Developments for the CMS Tracker Upgrade

Joachim Erfle joachim.erfle@desy.de page 1 07/07/11

Overview

- Motivation
- Measurement campaign overview
 - Why new sensors?
 - What is done?
- What materials are studied?
- Test structures
 - Which structures are studied?
 - Some basic structures
- Some new strip layouts
- First results

Motivation for new materials

Phase II Upgrade:

- Higher radiation
 - Higher leakage current
 - Higher operation voltage
 - Less signal
- Radiation harder sensors
 - More radiation hard material
 - More radiation hard layouts
- Higher occupancy
 - Multiple signals on one channel more likely
- → Higher granularity
 - e.g. shorter strips

Silicon Sensor Developments for the CMS Tracker Upgrade

Joachim Erfle joachim.erfle@desy.de page 3 07/07/11

New sensors of new material needed

- There is already knowledge about possible materials (e.g. MCz, p-type bulk)
- In order to define the baseline for the phase II upgrade a large campaign has been started with the participation of a significant number of institutes
- For best comparability different materials and structures are ordered from one high quality producer

The campaign has different goals:

- Find best material (wafer doping, thickness doping-type)
- Find best sensor layout
- Test some new layouts

Measurement Campaign Introduction

- All materials will be irradiated to the same fluences and undergo the same measurements
- There are different structures for different purposes
 - Standard structures (for material studies)
 - Some new layouts
 - Structures for tuning of geometries
- Main measurements:
 - IV/CV understanding the material basics
 - TCT understanding the shape of signals in the material
 - R and C understanding the structure-parameters
 - CCE (with LHC-readout) understanding the signal height

page 5 07/07/11

Material and irradiations

- 6 wafers of each bulk doping (N, P (with P-stop), P(with P-spray))
- 18 wafers of
 - FZ 320µm, FZ 200µm and FZ 120µm active thickness (all physical 320µm thick, thinned by deep diffusion)
 - FZ 200µm (physical thickness), FZ 120µm (active thickness, on handling wafer)
 - Mcz 200µm (physical thickness)
 - Epi 100µm and Epi 50µm (on substrate)
- In total 140 wafers

				1	
Radius	Protons	Neutrons	Ratio p/n	Total	Material
40 cm	3	4	0,75	7	≥ 200 µm
20 cm	10	5	2,00	15	all
15 cm	15	6	2,50	21	all
10 cm	30	7	4,29	37	all
5 cm	130	10	13,00	140	< 200 µm

Planned irradiation fluences (in E14 [cm⁻²]):

Silicon Sensor Developments for the CMS Tracker Upgrade

Joachim Erfle

joachim.erfle@desy.de

Wafer overview		
	Structure	To study
	Diodes	Material
	Baby standard	Reference Design / Material
	Baby with integrated pitch adapter	Design
	Pixel	Reference Design / Material
	Multigeometry Pixel	Layout parameters
	Multigeometry Strips	Layout parameters
	Baby strixel	Design
	Teststructures	Process parameters

Silicon Sensor Developments for the CMS Tracker Upgrade

Joachim Erfle joachim.erfle@desy.de

page 7 07/07/11

Some basic structures in detail

Diode:

isolation

n-diode volume

Upgrade

d=320 µm

Structure to determine bulk properties ($N_{eff} V_{dep}$)

Different structures to determine electrical characteristics of the process (capacities and resistances of different implant/poly layers)

n⁺-diffusion layer Silicon Sensor Developments for the CMS Tracker

Joachim Erfle joachim.erfle@desy.de page 8 07/07/11

Market and a second sec

Multi geometry Structures

Multi geometry strips

12 regions:4 pitches12 widths and overhangs

Aim: Find best geometrical parameters for strips/pixels

Multi geometry pixels

12 regions:

•2 different bias technologies (punch-

through and poly-silicon)

- •3 different width/pitch ratios
- •2 different pixel lengths

Joachim Erfle joachim.erfle@desy.de

short-strip-sensor

Some new layouts

Strip sensor with integrated pitch adapter

ts

- Pitch adapter needed for readout-chip connection
- Is it possible to integrate it on the sensor without loosing active area?
- Idea to reduce occupancy and increase resolution

Joachim Erfle joachim.erfle@desy.de

Measurements of unirradiated sensors

First: understand raw material

- Characterize wafers
- Check process reproducability
- Check for inhomogeneities inside wafers
- Check for material impurities and defects

 \rightarrow to understand results after irradiation

Wafer-Processing (of the thin FZ-part)

- Standard method: wafer bonding
 - Well known process
 - Relatively expensive
- For deep diffusion a 320µm wafer is used but the active volume volume is reduced by diffusing high doping from the back
 - New process
 - Cheaper

Silicon Sensor Developments for the CMS Tracker

Concentration profile from CV-curve

effective doping

Diodes behave like parallel-plate capacitors

→ measure capacitance vs voltage to determine depletion depth and charge carrier concentration

Upgrade

Joachim Erfle

joachim.erfle@desy.de

First results for integrated pitch adapter

Upgrade

First results for strixel sensors

Joachim Erfle

joachim.erfle@desy.de

page 15 07/07/11

First results for strixel sensors II

In the near area the far strip also collects charge

Laser scan far area signal in ADC 001 00 LASER signal strip 175 strip 176 strip 177 nea 80 strip 177 strip 175 20 40 50 60 90 10 30 70 80 100 step in µm strip 176 far far

In the far area everything looks fine – nearly no coupling between near and far strips

Joachim Erfle joachim.erfle@desy.de page 16 07/07/11

Irradiation overview

- This first irradiation is a step to check the deep-diffusion material (on a small sample)
- p-type and n-type floatzone material of three thicknesses:
 120μm, 200μm and 320μm
- One large and one small diode per type and irradiation-set
- Three irradiation sets, with a fluence of 10¹⁴ neq/cm²:
 - neutrons (reactor, 10¹⁴ neq/cm²)
 - protons (25 MeV, 1.09*10¹⁴ neq/cm²)
 - mixed (neutrons (reactor, 10¹⁴ neq/cm²) + protons (25 MeV, 1.09*10¹⁴ neq/cm²))

First irradiation step - neutrons

First irradiation step - protons

Conclusions and Acknowledgement

- New materials / designs needed for HL-LHC radiation-levels
- This Campaign started to measure a big set of different structures / materials of one high quality producer
- Materials look promising so far
- Standard structures give good results
- More to come with the new layouts
- Looking forward to looking at samples that are irradiated at higher fluences

Thanks to everyone providing material / data for this talk:

- Alexander Dierlamm (KIT)
- Robert Eber (KIT)
- Alexandra Junkes (UHH)
- Andreas Kornmayer (KIT)