
THE SILICON STRIP TRACKER OF THE FERMI LARGE AREA TELESCOPE

Luca Baldini INFN-Pisa luca.baldini@pi.infn.it

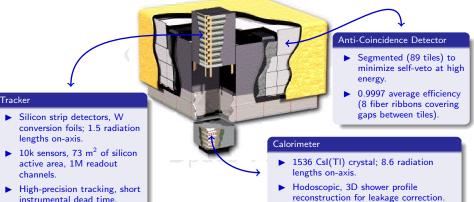
on behalf of the Fermi LAT collaboration


RD11, Firenze, July 6 2011

THE FERMI OBSERVATORY

Large Area Telescope (LAT)

- ▶ Pair conversion telescope.
- ► Energy range: 20 MeV-> 300 GeV
- ► Large field of view (≈ 2.4 sr): 20% of the sky at any time, all parts of the sky for 30 minutes every 3 hours.
- ► Long observation time: 5 years minimum lifetime, 10 years planned, 85% duty cycle.


Gamma-ray Burst Monitor (GBM)

- ▶ 12 Nal and 2 BGO detectors.
- ► Energy range: 8 keV-40 MeV.

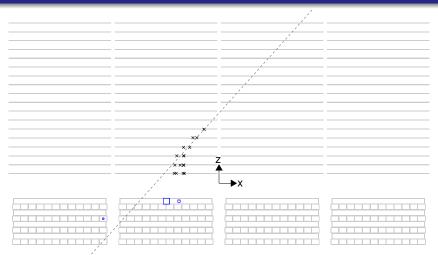
THE LARGE AREA TELESCOPE

Large Area telescope

- ▶ Overall modular design.
- ▶ 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).
- ► Tracker surrounded by an Anti-Coincidence Detector (ACD)

Instrument design drivers

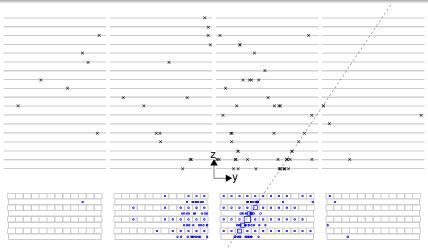
► Science design drivers


- ▶ Effective area and angular resolution: design of the tracker converter
- ▶ Energy range and resolution: thickness and design of the calorimeter
- Charged particle background rejection: mainly driving the ACD design, but also impacts the tracker and calorimeter design, along with the trigger and data flow

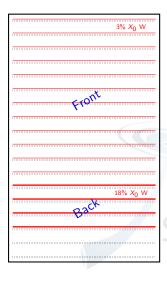
► Mission design drivers

- ► Launcher vehicle: instrument footprint (1.8 × 1.8 m²)
- ► Mass budget (3000 kg): maximum depth of the calorimeter
- Power budget (650 W overall): maximum number of electronics channels in the tracker—i.e. strip pitch and number of layers
- Launch and operation in space: sustain the vibrational loads during the launch, sustain thermal gradients, operate in vacuum

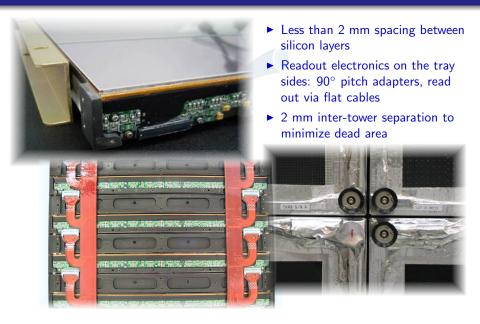
TRACKER RECONSTRUCTION: LOW ENERGY


Simulated 80 MeV gamma-ray

- ► Angular resolution dominated by multiple scattering
 - ► Call for thin converters...
 - ...but need material to convert the gamma-rays!


Tracker reconstruction: high energy

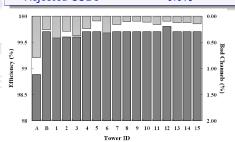
SIMULATED 150 GEV GAMMA-RAY


- ► Angular resolution determined by hit resolution and lever arm
 - ► Call for fine SSD pitch, but power consumption is a strong constraint
- ▶ Backsplash from the calorimeter also a potential issue

Basic tracker design

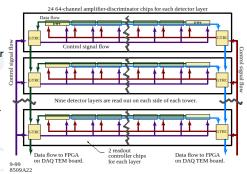
- ▶ 19 tray structures
 - Basic mechanical framework
- ► 18 x-y detection planes
 - Single sided SSDs, below the W foils
- ► Front: 12 planes with 0.03 X₀ converter
 - ▶ Best angular resolution
- ▶ Back: 4 planes with 0.18 X₀ converters
 - Increase the conversion efficiency
- ▶ Bottom: 2 planes with no converter
 - ► Tracker trigger needs at least 3 *x-y* layers
- ▶ Total depth: $1.5 X_0$ on axis

Tracker design: mechanics



THE SILICON STRIP DETECTORS

- ► 18 flight towers integrated and tested in 9 months
 - ► Flight Module A suffering from some processing issues during the set up of the assembly chain

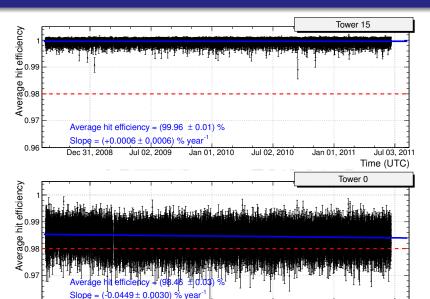

Coupling	AC
Outer size	$8.95 \times 8.95~\mathrm{cm}^2$
Strip pitch	228 μ m
Thickness	400 μ m
Depletion voltage	< 120 V
Leakage current	a few nA/cm^2 150 V
Breakdown voltage	> 175 V
Bad channels	$\approx 10^{-4}$
# SSD tested	12500
# single strip tests	\approx 30M
Rejected SSDs	0.6%

THE TRACKER ELECTRONICS SYSTEM

▶ Basic design

- ► 24 front-end chips and 2 controllers handle one Si layer
- Data can shift left/right to either of the controllers (can bypass a dead chip)
- Zero suppression takes place in the controllers (hit strips + layer OR TOT in the data stream)
- ► Two flat cables complete the redundancy

► Key features


- ▶ Low power consumption ($\approx 200 \ \mu \text{W/channel}$)
- ▶ Low noise occupancy (≈ 1 noise hit per event in the full LAT)
- ► Self-triggering (three *x*−*y* planes in a row, i.e. sixfold coincidence)
- Redundancy, Si planes may be read out from the right or from the left controller chip
- On board zero suppression

THE LAUNCH

THE SCIENCE MISSION JUST TURNED THREE

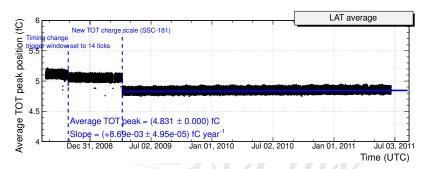
HIT EFFICIENCY

Jan 01, 2010

Jul 02, 2010

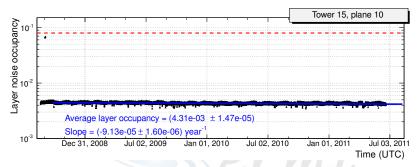
Jan 01, 2011

Jul 03, 2011


Time (UTC)

0.96

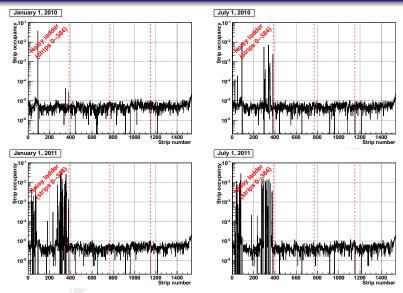
Dec 31, 2008


Jul 02, 2009

TIME OVER THRESHOLD

- ► Long term trending of the position of the MIP peak in the Tracker Time Over Threshold (averaged over the LAT)
- ► The two noticeable discontinuities are due to hardware/software changes
 - Analog signal remarkably stable (within much less than 1%) since the last of the two changes.

Noise occupancy


- ▶ Long term trending of the noise occupancy for a typical silicon layer
 - Measured accumulating counts on the silicon layers far from triggering towers (and cross-checked with dedicated periodic triggers)
- ▶ Noise occupancy at the level of 4×10^{-3} for a layer (1536 strips)
 - ▶ Translating into $2-3 \times 10^{-6}$ at the single strip level (dominated by accidental coincidences)...
 - ... or 2-3 noise hits per event in the full LAT

STRIP MASKS TRENDING

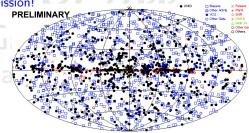
- ► Some 200 noisy strip masked prior to launch (0.02%)
- ▶ 213 additional noisy strips masked over the first three years of mission, for a total of 416 (0.05%)
- ► Two major contributors
 - Tower 0 (Fligth Module A): the first one being assembled, suffering from some processing issues—showed some evolution throughout the first year
 - ► Tower 3 (Flight Module 15): noise issue in one ladder—more on that later

A MINOR HARDWARE ISSUE

- ▶ Noise in one silicon ladder steadily increasing since January 2010
 - ► Really only one of the 2304 silicon ladders in the LAT

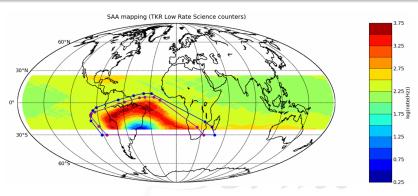
A minor hardware issue

To be debugged in space



- One power supply per tower
 - We only monitor the currents at the tower level (i.e. each HV line is biasing $36 \times 4 = 144$ silicon ladders)
 - ► Not trivial to measure a relative increase in the leakage current at the level of a single ladder
- ► Test runs with reduced bias HV (40, 60, 80 V vs. nominal 105 V)
 - Normal data taking, charge injection calibration
- ▶ No obvious root cause identified
 - ▶ Even if we lose the entire ladder it's less than 0.05% of the tracker
 - No evidence of similar phenomena in any other part of the LAT

CONCLUSIONS


- The LAT tracker is the largest solid-state tracker ever built for a space application
 - ▶ 73 m² of single-sided silicon strip detectors
 - ► Almost 900,000 independent electronics channels
- ► All design goals met with large margins
 - ► Single-plane hit efficiency in excess of 99%
 - ▶ Noise occupancy at the level of 1 channel per million
 - ▶ 160 W of power
- ▶ It has served beautifully the science of the first three years
 - ▶ No noticeable degradation of performance observed

► Fermi is a 5 to 10 years mission!

SPARE SLIDES

Mapping of the SAA

- ► The South Atlantic Anomaly is a region with a high density of trapped particles (mostly low-energy protons)
- ► We do not take physics data in the SAA (ACD HV is lowered) but we do record the trigger rate from CAL and TKR
- ► The mapping of the SAA was one of the goals of the commissioning phase, now routinely monitored

Trigger

► Hardware trigger at the single tower level

- All subsystems contribute
- TKR: three consecutive xy planes in a row hit
- ► CAL_LO: single CAL log with more than 100 MeV (adjustable)
- ► CAL_HI: single CAL log with more than 1 GeV (adjustable)
- ROI: MIP signal in one of the ACD tiles close to the triggering TKR tower
- ► CNO: heavy ion signal in one of the ACD tiles

► Event readout

- Each particular combination of trigger primitives is mapped into a so called trigger engine (determines hardware prescale factors, and readout mode)
- Upon a valid L1 trigger the entire detector is read out

Onboard filter

Filter basics

- Need software onboard filtering to fit the data volume into the allocated bandwidth
- ▶ Full instrument information available to the onboard processor
- Flexible, fully configurable (the following reflects the nominal science data taking setting)

► Nominal implementation

- ► Each event is presented to up to 4 (adjustable) different filters
- ► GAMMA: rough photon selection (main source of science data)
- ► HIP: heavy ions (continuously collected for calibration purposes)
- MIP: used in calibration runs
- DGN: configured to provide a prescaled (×250) unbiased sample of all trigger types
- Final gamma selection performed on ground (see the following)