A 3-D large area imaging system with very high performances

D. Lo Presti University of Catania I.N.F.N. Catania

- Background and actual status
- Main goal
- Scintillating Optical Fibers
- The tracker prototype
- Test results
- The particle residual range detector
- Towards the proton radiography real-time
- Conclusions

Background

- 3 years R&D project founded by CSN V INFN;
- Development of new detectors
 - Large area Imaging device
 - Trackers + Residual range detector
 - High space resolution
 - High event rate
 - Real time
- Scintillating optical fibers
- Detector read-out channel minimization
- From sensor to analysis and visualization software

Final detector

Scintillating Fibers: what manufacturer says..

Single-clad Fibers Properties						
Core material	Polystyrene					
Core refractive index	1.60					
Density	1.05					
Cladding material	Acrylic					
Cladding refractive index	1.49					
Cladding thickness, round fibers	3% of fiber diameter					
Cladding thickness, square fibers	4% of fiber size					
Numerical aperture	0.58					
Trapping efficiency, round fibers	3.44% minimum					
Trapping efficiency, square fibers	4.4%					
No. of H atoms per cc (core)	4.82 x 10 ²²					
No. of C atoms per cc (core)	4.85 x 10 ²²					
No. of electrons per cc (core)	3.4 x 10 ²³					
Radiation length	42 cm					
Operating temperature	-20℃ to +50℃					
Vacuum compatible	Yes					

Multi-clad Fibers Properties					
Fluor-acrylic					
1.42					
1% of fiber diameter					
2% of fiber size					
0.74					
5.6% minimum					
7.3%					

Specific Properties of Standard Formulations

Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	1/e Length m*	# of Photons per MeV**	Charact
BCF-10	blue	432	2.7	2.2	~8000	Genera
BCF-12	blue	435	3.2	2.7	~8000	Improv
BCF-20	green	492	2.7	>3.5	~8000	Fast gre
BCF-60	green	530	7	3.5	~7100	3HF for
BCF-91A	green	494	12	>3.5	n/a	Shifts b
BCF-92	green	492	2.7	>3.5	n/a	Fast blu
BCF-98	n/a	n/a	n/a	n/a	n/a	Clear w

teristics / Applications

- l purpose; optimized for diameters >250µm
- ed transmission for use in long lengths
- en scintillator
- mulation for increased hardness
- lue to green
 - e to green shifter
 - aveguide

RD11 · 10th International Conference

* For 1mm diameter fiber; measured with a bialkali cathode PMT ** For Minimum Ionizing Particle (MIP) corrected for PMT sensitivity.

6-8 July 2011

What scientific literature says...

- Attenuation length is not so easy to be determined
- The right PMT must be chosen to fit with sci-fi
- Light yield is dependent on sci-fi dopant concentration
- Radiation hardness
- Good timing performances
- Optimal size control

A. Antonelli et al. / Nucl. Instr. and Meth. in Phys. Res. A 370 (1996) 367-371

Table 2Attenuation length and light vield

Fiber type	λ [cm]	N(0.5 m) [p.e./mm]	N(2 m) [p.e./mm]	N(3.7 m) [p.e./mm]	
BCF-12 (92)	226±3	4.5±0.6	2.2±0.2	1.1±0.1	pr
BCF-12 (93)	286±8	4.3±0.3	2.4 ± 0.2	1.3 ± 0.1	
SCSF-81	321 ± 5	4.2±0.3	2.4±0.2	1.5 ± 0.1	
Polifi-0046 (92)	284 ± 5	3.5 ± 0.5	1.8 ± 0.2	1.0 ± 0.1	
Polifi-0046 (93)	267±6	3.9±0.5	2.2 ± 0.2		
able 3 arameter τ and time	resolutions				
iber type	τ [ns]	$\sigma_{i}(0.2 \text{ m}) [\text{ns}]$	$\sigma_t (2 \text{ m}) [\text{ns}]$	σ_i (4 m) [ns]	
CF-12 (92)	2.42±0.08	0.23	0.34	0.52	
CE 12 (03)	216+0.03	0.21	0.28	0.40	

369

What scientific literature

says...

Geant4 simulations

The Tracker

- Scintillating optical fiber Bi-dimensional strip detector
- Optical channel reduction:
 - Each sci-fi is read at both end for coincidence
 - 4√N channel reduction factor
- Fast comparator array front-end
- Digital coded output for position
- Analog output for $\Delta E PSPM$
- dynode signal

50x and 100x microscope image of the tracker sensitive area

Read-out channel reduction system

Strip_{hit}=Group* *n* + StripSet

Read-out channel reduction system

2,5 mm clear fiber

500 µm sci-fi

- Optical and mechanical coupling
- Optical gel
- Cut and lapping of each fiber

The Tracker

Prototype complete

- 20x20 cm²
- 160 channels
- >10 MHz
- 500 μm sci-fi BCF-12
- Hamamatsu PSPM 16x16
 - ΔE Dynode signal
- Full custom FE
- NI PCI-RIO 7811 DAQ
- 70x100 cm²

Software and Hardware

- FPGA based DAQ board by National Instruments;
- Platform LabView

Actual status

- Real time imaging device for charged particles based on scintillating optical fibers;
- High space resolution (150 μ m) and large area tracker, (20x20 cm²);
 - 500 μm multi-clad square scintillating optical fibers;
 - Particle track and ΔE ;
 - Real Time;
 - Max event Rate 10 MHz;
- High space resolution (80 μ m) and large area tracker, (12x16 cm²);
 - 250 μ m multi-clad square scintillating optical fibers;
 - Particle track and ΔE ;
 - Real Time;
 - Max event Rate 10 MHz;
- Residual energy detector by particle range:
 - Area 4,5x4,0 cm²
 - Estimated energy resolution 3%;
 - Proton up to 62 MeV/A;
 - Real Time;
 - Max event Rate 10 MHz;

OFFSET Tracker Measurements

- UV Laser
- Cosmic rays
- Beta Source ⁹⁰Sr
- 62 to 30 MeV proton beam

Proton Radiography OFFSET+PRIMA Calorimeter Plexiglass step 1 cm

OFFSET Tracker ▲E measurement

- PSPM dynode signal acquisition by digital oscilloscope;
- No correction by the crossing position of the particle;
- 4 pixel PSPM involved.

Proton radiography of a 1 cm plexiglass sheet

- Tracker in front of a YAG calorimeter (PRIMA)
- 62 MeV Proton beam
- Trigger given by the tracker
- Event counter
- Time stamping
- Offline reconstruction

Collimator n°4 from 3 to 3,4 mm

adiation Hardness of Semiconductor Detectors 6-8 July 2011

RD11 · 10th International Confer

ductor Detectors 6-8 July 2011

Residual range detector

- 60 scintillating fiber layers BCF-12;
- 45x40 mm² area;
- 500 μm multi-clad square scintillating optical fibers;
- 1mm wavelength shifter x2;
- 64 channels Hamamatsu PSPM
- Read-out channel reduction
- Time over threshold
- Real time

Next steps

- First prototype of the tracker
 - Demonstration of the technique
 - Planned DAQ electronics upgrade
 - Planned overall size reduction
- New prototypes of tracker and residual range detector under construction
- Development of a particle radiography device real time, large area and high space resolution

•PCT real time

Conclusions

- The read-out channel reduction allows for a faster front-end and DAQ electronics
- Scintillating optical fibers are suitable for medical imaging at high rate and high space resolution
- The detectors under study and development can be combined to form modular and complex detector
- The main issue is the mechanical frame for larger detectors