Operation of the CMS Silicon Tracker

Derek Axel Strom (UIC) on behalf of the CMS Collaboration

July 6, 2011

RD11: 10th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors

Florence, Italy

Introduction

Status and Operation of the Tracker Calibration Calibration Primary Vertex reconstruction Lorentz Angle Impact parameter Performance on physics

Derek Axel Strom

Conclusion

Operations (this talk)

• CMS Silicon Tracker at the LHC

RD11 - Florence, Italy

Performance (Matthew's talk)

• Tracking efficiency

The CMS detector at the LHC

The CMS Silicon Tracker

Silicon Strips +

9 million channels 200 m² silicon area Length = 5.8 m Diameter = 2.5 m

Strip Outer Barrel

Pixels 66 million channels

1.1 m² silicon area Barrel length = 53 cm Layers @ R = 4.2, 7.3, 11 cm FD @ z = 34.5, 46.5 cm

Strip Inner Barrel

Tracker

Main tracking detector dp/p = 10% for 1TeV particles High efficiency Good 2 track separation Radiation hardness Light as possible

Pixel Barrel

Derek Axel Strom

Operation of the CMS Silicon Tracker

2 × Strip End Cap

RD11 - Florence, Italy

Pixel Forward disks

July 6, 2011

Silicon Strip Detector

Modules

Thin: 6136 3112(ss) + 3024(ds) Thick: 9096 5496(ss) + 3600(ds)

75,376 APV chips 9,648,128 strips

Tracker Inner Barrel (TIB): 4 layers Tracker Outer Barrel (TOB): 6 layers Tracker Inner Disks (TID): 3*2 disks Tracker End Cap (TEC): 9*2 disks Coverage: $|\eta| < 2.5$

Each track has at least 10 high precision measurements

Derek Axel Strom

Pixel Detector

Derek Axel Strom

Operation of the CMS Silicon Tracker

Modules

Bpix (Barrel Pixel) 768 modules, 11520 ROCs 48 Mpixels

Fpix (Forward Pixel) 192 panels, 4320 ROCs 18 Mpixels

Coverage:
$$|\eta| = 2.1$$
 with 3 pixel hits
2.1 < $|\eta| < 2.5$ with 2 pixel hits

Tracker Infrastructure

Service	Strips	Pixels
Cooling	 Coolant T = +4°C Two cooling plants: SS1, SS2 91 cooling loops SS1 stable during 2010/2011, leak 0.1 kg/day SS2 developed leak, now controlled (0.5 kg/day) 	- Coolant T = +7.4°C - Stable during 2010/2011
Power	 - Stable running in 2010/2011 - 2010: 1% PSU failure rate - 2011: <1% PSU failure rate 	- Stable running in 2010/2011
Electronics	 Hardware very stable in 2010/2011 Firmware adjustments to cope with <i>out-of-synch</i> from extra frame events 	-Hardware very stable in 2010/2011 - Firmware adjustments to handle high multiplicity and internal noise
Detector Control Systems (DCS)	 Monitor power (LV and HV), Temperature, and Relative Humidity Stable functionality New calibration of humidity and dew-points made at the beginning of 2011 	
Data Quality Monitoring (DQM)	-Monitoring continues to improve with added data taking experience - Stable functionality	
Online Software	 Tracker software is very well written and requires little maintenance Calibrations work very reliably Long term support of experts always as concern 	
Derek Axel Strom	Operation of the CMS Silicon Tracker RD11 - Florence, It	aly July 6, 2011 7

Tracker Infrastructure

Service	Strips	Pixels
Cooling	 Coolant T = +4°C Two cooling plants: SS1, SS2 91 cooling loops SS1 stable during 2010/2011, leak 0.1 kg/day SS2 developed leak, now controlled (0.5 kg/day) 	- Coolant T = +7.4°C - Stable during 2010/2011
Power	 Stable running in 2010/2011 2010: 1% PSU failure rate 2011: <1% PSU failure rate 	011 RUNN ¹¹ .J10/2011
Electronics	- Hardware very stable : - Firmware adjust from extra f The Tracker 10 and 	 r-tardware very stable in 2010/2011 Firmware adjustments to handle high multiplicity and internal noise
Detector Control Systems (DCC	<i>du</i> ¹ 1V), Temperature, and R	Relative Humidity e at the beginning of 2011
Data Qualit _. Monitoring (. 7 9	3% toring continues to improve with added data - Stable functionality	taking experience
Online Software	-Tracker software is very well written and requires l i - Calibrations work very reliably - Long term support of experts always as concern	ittle maintenance
Derek Axel Strom	Operation of the CMS Silicon Tracker RD11 - Florence, It	July 6, 2011 8

Tracker Operation in 2011

• CMS is 93% efficient since the March 2011 restart

Derek Axel Strom

Operation of the CMS Silicon Tracker

Tracker Operation in 2011

CMS is 93% efficient since the March 2011 restart

Downtime by Tracker category

- 31% Tracker downtime
- Strips DAQ (60% CMS DAQ) = 19%
- Strips Power = 3%
- Pixel DAQ = 8%
- Pixel Power = 1%

7% CMS downtime by detector category

RD11 - Florence, Italy

July 6, 2011

Tracker Organization

- Since 2010 there are no permanent Tracker shifters
- Detector On-call (DOC) responsible for daily operations
 - One DOC each for Strips and Pixels
 - Serves as single point contact for all Strip or Pixel related issues
 - One week shift duration
- Team of on-call experts also available
 DCS, DAQ, DQM, Power, Safety

Derek Axel Strom

RD11 - Florence, Italy

July 6, 2011

Strip Detector Status

- Strip Tracker: 97.75%
 - TIB/TID: 94.3%
 - TOB: 98.1%
 - TEC+: 98.2%
 - TEC-: 98.9%

Evolution of Strips excluded from DAQ

Mapping of dead strips

3 categories of failures

- "Dead" permanently damage
- "Excluded" occasional failure
- Shows readout errors

Pixel Detector Status

- Pixel detector: 96.9%
 - FPix: 92.8%
 - BPix: 98.4%
- 'Dead' Pixels: 3.1%

Evolution of Pixels excluded from DAQ

BPix loss at ~0.5%/year -Problems consistent with failing wire bonds

FPix – single point loss in service electronics

Online Calibrations

• Proper readout defined by several groups of (e.g. Strip) settings:

- Majority of settings remain unchanged until:
 - Change in detector hardware (e.g. Front End Driver replacement)
 - Change in detector operating temperature
 - Significant radiation accumulated
- Some parameters re-calibrated regularly:
 - Pedestals and noise
 - Offset in optical receivers to keep signal within ADC range

Derek Axel Strom

Time Signal Profile

• Profile of the signal for difference parts of the Strip Tracker shows expected 12 ns width

Random time delay scan

Lorentz Angle Measurements

 Electrons and holes move under the influence of the electric field to the implants where they are collected. In the 3.8 T CMS magnetic field, the Lorentz force tilts the drift direction and displaces the reconstructed position.

Lorentz Angle Measurements

- Lorentz shift makes clusters wider
 - Better hit position resolution
 - Must be known for data and MC
- 1. Minimum cluster size in cosmic data
 - Measure cluster width vs. incident angle
- 2. 'Grazing angle' in collision data
 - Measure electron drift length vs. production depth
- Results are consistent in
- different methods and with MC
 - BPix: $\cot \alpha = -0.462(452) \pm 0.003(2)$ FPix: $\cot \alpha = -0.074(74) \pm 0.005(4)$

Derek Axel Strom

dE/dx vs. Momentum

- Energy deposited in silicon is measured from all values of the hits (~10 points)
- Kaons, protons, deuterons, and tritium are visible
- Bethe-bloch expectations are in red: extrapolated from a fit to the proton line

HV Scan

• High Voltage scan is performed by both Strips and Pixels separately

Strips

- Each module measured
- Fit to the signal over the nominal noise of the depletion voltage
- Measurement performed twice per year

Pixels

- Few modules in Bpix and Fpix measured
- No change in the depletion voltage observed
- Measurement performed once per year

Detector Leakage Currents

- Leakage current increasing with integrated luminosity
- Effects of radiation on silicon are already visible
- At present temperatures good to run up to $\sim 10 \text{ fb}^{-1}$

Conclusion

- The CMS Silicon Tracker has operated very smoothly with minimal maintenance in 2011 resulting in > 98% running
- Both the Strip and Pixel detectors have healthy alive fractions @ ~97%
- CMS has collected it's first 1 fb⁻¹ of data and the Tracker is not showing any sign of problems with an increase in instantaneous luminosity
- The operation and performance of the detector is well under control... please see more on the Tracker performance in Matthew Chan's talk
- dE/dx measurements show a nice separation of particles
- The first observed effects of radiation damage are matching expectations
- The Tracker is providing high quality data used in various physics analysis

Derek Axel Strom

Backup Slides

Derek Axel Strom

Going Colder

- Present temperatures
 - Strips: +4°C
 - Pixels: +7.4°C
- Plan for 2011/2012
 - Strips: stay at +4°C through 2012, no problems foreseen
 - Pixels: go to 0°C in 2012, factor of 2 reduction in leakage current