Measurements with a Si-strip telescope

Simone Bianco, Max Becker, Kai-Thomas Brinkmann, Ralf Kliemt, Karsten Koop, Robert Schnell, Thomas Würschig, Hans Georg Zaunick

Outline

- Telescope layout:
- Setup
- DAQ
- DAQ to analysis interface
- Setup optimization:
- Alignment
- Calibration
- Rotation of one sensor
- Longitudinal shift of one sensor
- Positioning and resolution
- Scattering measurements:
- Setups
- Measurements results
- Comparison with simulations

Telescope setup

The telescope in its operational setup at COSY (Jülich)

Four boxes:

$\rightarrow 2$ double sided Si -strip sensors
$\rightarrow 4$ single sided Si-strip sensors

Sensors:

$1.92 \mathrm{~cm} \times 1.92 \mathrm{~cm}$ active area $300 \mu \mathrm{~m}$ thick
$50 \mu \mathrm{~m}$ pitch
90° stereo angle (for double sided ones)

Trigger:

$\rightarrow 4$ scintillators (2 before and 2 downstream from the telescope) - 3/4 coinc.

Telescope - DAQ

FEE: APV25-S1
Depletion voltage: ~60 V
p in n bulk
(n in n on the other side)
Readout AC coupled
Punch through bias
Max DAQ rates ~ 1.2 k evts/s

7/07/2011

Telescope: from DAQ to analysis

Alignment

Realized in two steps:
\checkmark Same charge injected on each of the FE channels \rightarrow to resolve differences in the response
\checkmark MIP hypothesis
\rightarrow to set an absolute ADC counts-to-energy-loss scale

First measurements

Beam profile: scint. overlap

First measurements:

\checkmark behavior of the sensors
\checkmark experimental conditions
\checkmark benchmark of the tools

RD11

Eloss for tracks with different \# of hits

7/07/2011

Rotation of a sensor

The second box was rotated:
Different beam incident angles

Effect of the rotation on energy loss and cluster size

Measurements performed with 4 GeV electrons at DESY

Rotation - II

Hit distribution on the rotated box
2.95 GeV/c protons

Simulations of the previous setups, 4 GeV electrons

Translation of one sensor

Longitudinal scan:

One sensor moved along the beam direction

$$
\mathrm{RES}=\sqrt[4]{\sigma_{1} * \sigma_{2} * \sigma_{3} * \sigma_{4}}
$$

where σ_{i} is the width of the residuals distribution obtained on sensors i

Measurements with 3 GeV electrons at DESY

Positioning optimization

Simulations with 5 GeV e and a $300 \mu \mathrm{~m}$ Si device

Setup	σ_{x}	σ_{y}
	$\mu \mathrm{~m}$	$\mu \mathrm{~m}$
A	56	53
B	16	16
C	34	34

	B1	B2	Device	B3	B4
	$\mathrm{z}(\mathrm{cm})$	$\mathrm{z}(\mathrm{cm})$	$\mathrm{z}(\mathrm{cm})$	$\mathrm{z}(\mathrm{cm})$	$\mathrm{z}(\mathrm{cm})$
A	16.	86.	110.	145.	185.5
B	90.	100.	110.	120.	130.
C	65.	85.	110.	139.	159.

Photon tests

Electron ring \rightarrow Bremsstrahlung photons (up to 3 GeV) $\rightarrow \mathrm{PP}$ in a converter
2 Boxes equipped with double sided sensors
Scintillator as a converter

Hits on the 1 st sensor (2 hits/sensor events)

Correlation of the distance between two hits on the two sensors

Distribution of the opening angle of the $\mathrm{e}^{+} \mathrm{e}$ pair \leftarrow Low E (~400 MeV) Higher energies \rightarrow

RD11

Scattering measurements

Beams:
COSY Protons of $2.95 \mathrm{GeV} / \mathrm{c}$ DESY Electrons of 1.5 GeV

Scatterers:

- 1 cm of $\mathrm{C}\left(\rho \sim 1.79 \mathrm{~g} / \mathrm{cm}^{3}\right)$
- 2 cm of $\mathrm{C}\left(\rho \sim 1.69 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$\cdot 2.5 \mathrm{~cm}$ of carbon foam ($\rho \sim 0.52 \mathrm{~g} / \mathrm{cm}^{3}$)
- Carbon foils
- a prototype for support structures
(4mm C-foam with embedded cooling pipes)

$$
\left(\rho \sim 1.1 \mathrm{~g} / \mathrm{cm}^{3}\right)
$$

7/07/2011

Scattering mesurements - II

Simulations

- The setup used for simulations was the same as the one of the measurements
- Geo definition:
- 6 silicon parallelepipeds with sizes $1.92 \mathrm{~cm} \times 1.92 \mathrm{~cm} \times 300 \mu \mathrm{~m}$
- Beam definition: "single-particle" events, particles propagated from a few cm upstream the telescope
- No beam divergence (small effect due to geometry restrictions)
- Beam shot toward the center of the first box, parallel to the longitudinal axis
- Propagation realized with Geant3 (tested several scattering models without experiencing severe differences)

Results with protons

Results with electrons

Scatterer	e- Mom.	Sigma Meas. (mrad)	Sigma Sim (mrad)
air	$1 \mathrm{GeV} / \mathrm{c}$	1.24	1.40
air	$3 \mathrm{GeV} / \mathrm{c}$	0.423	0.476
air	$5.4 \mathrm{GeV} / \mathrm{c}$	0.243	0.284
2.5 cm C-Foam	$1 \mathrm{GeV} / \mathrm{c}$	2.18	2.54
2.5 cm C-Foam	$3 \mathrm{GeV} / \mathrm{c}$	0.746	0.887
2.5 cm C-Foam	$4 \mathrm{GeV} / \mathrm{c}$	0.588	0.645
1 Cm C	$1 \mathrm{GeV} / \mathrm{c}$	2.48	2.89
1 Cm C	$5.4 \mathrm{GeV} / \mathrm{c}$	0.511	0.599
2 Cm C	$1 \mathrm{GeV} / \mathrm{c}$	3.15	3.82
2 Cm C	$5 \mathrm{GeV} / \mathrm{c}$	0.698	0.807
Foam Disk	$1 \mathrm{GeV} / \mathrm{c}$	1.76	1.87
Foam Disk	$3 \mathrm{GeV} / \mathrm{c}$	0.600	0.611
Foam Disk	$4 \mathrm{GeV} / \mathrm{c}$	0.471	0.483

Conclusions

- The telescope was successfully operating in several beam conditions
- Different setups have been tested
- The effects of rotations and positioning of the sensors has been studied
- Scattering measurements were performed
- A direct comparison between analysis and simulations allowed to validate our framework

Thanks for your attention!

Backup slides

Rotation of One Sensor - Simulations

MVDStripDigis.fCharge \{MVDStripDigis.fSensorID==0\}
htemp

Entries	40267
Mean	$2.927 \mathrm{e}+04$
RMS	9841

9841

Electrons of 4 GeV - 0 deg rotation

Rotation of One Sensor - Simulations

MVDStripDigis.fCharge \{MVDStripDigis.fSensorID==1\}

Electrons of 4 GeV • 44.4 deg rotation

Scattering distributions

$2.95 \mathrm{GeV} / \mathrm{c}$ protons scattering in 1 cm of C (density $1.79 \mathrm{~g} / \mathrm{cm} 3$)

FEE to SIM maps

	0	
	1	/TS_1/TTVol_0/TTDouble_0/StripActiveTD1_0
	2	/TS_1/TTVol_0/TTDouble_0/StripActiveTD1_0
	3	/TS_1/TTVol_0/TTDouble_0/StripActiveTD1_0
	4	/TS_1/TTVol_0/TTDouble_0/StripActiveTD1_0
	5	/TS_1/TTVol_0/TTDouble_0/StripActiveTD1_0
	0	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3a_0
	1	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3a_0
	2	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3a_0
-1	3	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3a_0
	0	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3b_0
10	1	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3b_0
11	2	/TS_1/TTVol_0/TTSingle_0/StripActiveTS
2	3	/TS_1/TTVol_0/TTSingle_0/StripActiveTS3
2	0	TS_1/TTVol_0/TTSingle_0/StripActiveTS4a_0
13	1	Vol_0/TTSingle_0/StripActiveTS4a_0
14	2	/TS_1/TTVol_0/TTSingle_0/StripActive
	3	/TS_1/TTVol_0/TTSingle_0/StripActiveTS4a_0
	0	/TS_1/TTVol_0/TTSingle_0/StripActiveTS4b_0
	1	/TS_1/TTVol_0/TTSingle_0/StripActiveTS4b_0
17	2	/TS_1/TTVol_0/TTSingle_0/StripActiveTS4b_0
	3	/TS_1/TTVol_0/TTSingle_0/StripActiveTS4b_0
8	0	/TS_1/TTVol_0/TTDouble_0/StripActiveTD2_0
	1	/TS_1/TTVol_0/TTDouble_0/StripActiveTD2_0
20	2	/TS_1/TTVol_0/TTDouble_0/StripActiveTD2_0
	3	/TS_1/TTVol_0/TTDouble_0/StripActiveTD2_0
22	4	/TS_1/TTVol_0/TTDouble_0/StripActiveTD2_0
23		

Converter - Single Sided Modules

The converter is creating PndMvdStripDigi objects.
The two single sided sensors (components of each of the single sided boxes) are treated independently.

The MVD strip reconstruction tools are designed to work with double sided sensors.

In the definition of the parameters we set one ideal strip on the bottom side, choosing as a pitch the width of the sensor.

When a single sided sensor is hit we fill the TClonesArray with one more digi on the bottom side:

Top side:384 strips
3 Frontend chips

DetName, Index, \ldots	Like hits on the top side
Charge	Sum of the values on the top side
Channel	0
Frontend chip	4

Z-reco @ ELSA

reco vertex position

$2.95 \mathrm{GeV} / \mathrm{c}$ protons @ COSY

4 GeV electrons @ DESY

Cluster size

0 deg rotation

45 deg rotation

Simulation Setup

```
G E A N T Version 3.2111 DATE/TIME 110601/1058 R U N 1 *
Data structure Date Time GVERSN ZVERSN
INIT 110601 1058 3.2111 3.77 *
KINE 
HITS 
DIGI 
```

Standard TPAR for this run are
CUTGAM $=1.00 \mathrm{MeV}$ CUTELE $=1.00 \mathrm{MeV}$ CUTNEU= 1.00 MeV CUTHAD $=1.00 \mathrm{MeV}$ CUTMUO $=1.00 \mathrm{MeV}$ BCUTE $=10.00 \mathrm{TeV}$ BCUTM $=10.00 \mathrm{TeV}$ DCUTE $=10.00 \mathrm{TeV}$ DCUTM $=10.00 \mathrm{TeV}$ PPCUTM $=10.00 \mathrm{TeV}$
$I P A I R=0 . I C O M P=0 . \quad I P H O T=0 . I P F I S=0 . \quad I D R A Y=0 . \quad \mid A N N I=0 . \quad I B R E M=1 . \quad \operatorname{HADRR}=0$. $I M U N U=0 . I D C A Y=0 . I L O S S=4 . I M U L S=1 . I R A Y L=0 . I L A B S=0 . I S Y N C=0 . I S T R A=0$.

```

Energy loss:no delta
Molière model rays```

