

Measurements with a Si-strip telescope

<u>Simone Bianco</u>, Max Becker, Kai-Thomas Brinkmann, Ralf Kliemt, Karsten Koop, Robert Schnell, Thomas Würschig, Hans Georg Zaunick

Bonn-Cologne Graduate School of Physics and Astronomy

Outline

7/07/2011

- Telescope layout:
 - Setup
 - DAQ
 - DAQ to analysis interface
- Setup optimization:
 - Alignment
 - Calibration
 - Rotation of one sensor
 - Longitudinal shift of one sensor
 - Positioning and resolution
- Scattering measurements:
 - Setups
 - Measurements results
 - Comparison with simulations

Simone Bianco

RD11

Telescope setup

The telescope in its operational setup at COSY (Jülich)

Four boxes:

→2 double sided Si-strip sensors
→4 single sided Si-strip sensors
Sensors:

1.92cm x 1.92cm active area
300 µm thick
50 µm pitch
90° stereo angle (for double sided ones)

Trigger:

 \rightarrow 4 scintillators (2 before and 2 downstream from the telescope) - 3/4 coinc.

Simone Bianco

RD11

Telescope - DAQ

RD11

FEE: APV25-S1

Depletion voltage: ~60 V p in n[·] bulk (n in n on the other side)

Readout AC coupled Punch through bias Max DAQ rates ~ 1-2 k evts/s

Simone Bianco

Telescope: from DAQ to analysis

Simone Bianco

RD11

Alignment

Iterative procedure to align sensors:

- 1. Measure residual on the 1^{st} sensor
- 2. Correct the position of the 1st sensor
- 3. 2nd sensor... 6th sensor
- 4. Reiterate the whole loop

Energy Calibration

Realized in two steps:

- ✓ Same charge injected on each of the FE channels
 → to resolve differences in the response
- ✓ MIP hypothesis
 - → to set an absolute ADC counts-to-energy-loss scale

Simone Bianco

RD11

First measurements

First measurements:

- ✓ behavior of the sensors
- ✓ experimental conditions
- ✓ benchmark of the tools

Rotation of a sensor

The second box was rotated: Different beam incident angles

7/07/2011

Effect of the rotation on energy loss and cluster size

Measurements performed with 4 GeV electrons at DESY

Simone Bianco

RD11

Rotation - II

Hit distribution on the rotated box 2.95 GeV/c protons

Measurements with 3 GeV electrons at DESY

Positioning optimization

Simulations with 5 GeV e^{\cdot} and a 300 μm Si device

Setup	σ_x	σ_y
	μm	μm
А	56	53
В	16	16
С	34	34

	B1	B2	Device	B3	B4
	z(cm)	z(cm)	z(cm)	z(cm)	z(cm)
Α	16.	86.	110.	145.	185.5
В	90.	100.	110.	120.	130.
С	65.	85.	110.	139.	159.

Simone Bianco

RD11

Photon tests

Electron ring \rightarrow Bremsstrahlung photons (up to 3 GeV) \rightarrow PP in a converter

2 Boxes equipped with double sided sensors

Scintillator as a converter

Distribution of the opening angle of the e⁺e⁻ pair

←Low E (~400 MeV)

Higher energies \rightarrow

Simone Bianco

RD11

Scattering measurements

Beams:

COSY Protons of 2.95 GeV/c DESY Electrons of 1-5 GeV

Scatterers:

- 1 cm of C ($\rho \sim 1.79 \text{ g/cm}^3$)
- 2 cm of C (ρ~1.69 g/cm³)
- 2.5 cm of carbon foam ($\rho \sim 0.52 \text{ g/cm}^3$)
- Carbon foils
- a prototype for support structures (4mm C-foam with embedded cooling pipes) (ρ~1.1 g/cm³)

Simone Bianco

RD11

Scattering mesurements - II

Simone Bianco

RD11

Simulations

- The setup used for simulations was the same as the one of the measurements
- Geo definition:
 - 6 silicon parallelepipeds with sizes 1.92cmx1.92cmx300µm
- Beam definition: "single-particle" events, particles propagated from a few cm upstream the telescope
- No beam divergence (small effect due to geometry restrictions)
- Beam shot toward the center of the first box, parallel to the longitudinal axis
- Propagation realized with Geant3 (tested several scattering models without experiencing severe differences)

RD11

Results with protons

2.95 GeV/c protons scattering in:

RD11

C-based

materia

7/07/2011

-0.005 0

Simone Bianco

Results with electrons

Scatterer	e ⁻ Mom.	Sigma Meas. (mrad)	Sigma Sim (mrad)
air	1 GeV/c	1.24	1.40
air	3 GeV/c	0.423	0.476
air	5.4 GeV/c	0.243	0.284
2.5 cm C-Foam	1 GeV/c	2.18	2.54
2.5 cm C-Foam	3 GeV/c	0.746	0.887
2.5 cm C-Foam	4 GeV/c	0.588	0.645
1 Cm C	1 GeV/c	2.48	2.89
1 Cm C	5.4 GeV/c	0.511	0.599
2 Cm C	1 GeV/c	3.15	3.82
2 Cm C	5 GeV/c	0.698	0.807
Foam Disk	1 GeV/c	1.76	1.87
Foam Disk	3 GeV/c	0.600	0.611
Foam Disk	4 GeV/c	0.471	0.483

Simone Bianco

RD11

Conclusions

- The telescope was successfully operating in several beam conditions
- Different setups have been tested
- The effects of rotations and positioning of the sensors has been studied
- Scattering measurements were performed
- A direct comparison between analysis and simulations allowed to validate our framework

RD11

Thanks for your attention!

Backup slides

Rotation of One Sensor - Simulations

Rotation of One Sensor - Simulations

Scattering distributions

2.95 GeV/c protons scattering in 1 cm of C (density 1.79 g/cm3)

FEE to SIM maps

RW SW

Template of a map

Converter – Single Sided Modules

The converter is creating PndMvdStripDigi objects. The two single sided sensors (components of each of the single sided boxes) are treated independently.

The MVD strip reconstruction tools are designed to work with double sided sensors.

In the definition of the parameters we set one ideal strip on the bottom side, choosing as a pitch the width of the sensor.

When a single sided sensor is hit we fill the TClonesArray with one more digi on the bottom side:

DetName, Index,	Like hits on the top side
Charge	Sum of the values on the top side
Channel	0
Frontend chip	4

Z-reco @ ELSA

2.95 GeV/c protons @ COSY

4 GeV electrons @ DESY

Cluster size

0 deg rotation

45 deg rotation

Simulation Setup

GEANT Ve	rsion 3.2111	l date	Z/TIME 110601/1058	RUN 1	*
Data structu	e Date Tir	ne GVE	RSN ZVERSN		*
INIT 110	601 1058	3.2111	3.77	*	
KINE 11	601 1058	3.2111	3.77	*	
HITS 110	601 1058	3.2111	3.77	*	
DIGI 110	601 1058	3.2111	3.77	*	

Standard TPAR for this run are

*

CUTGAM= 1.00 MeV CUTELE= 1.00 MeV CUTNEU= 1.00 MeV CUTHAD= 1.00 MeV CUTMUO= 1.00 MeV BCUTE = 10.00 TeV BCUTM = 10.00 TeV DCUTE = 10.00 TeV DCUTM = 10.00 TeV PPCUTM= 10.00 TeV

Energy loss:no delta Molière model rays