Tracking and vertexing performance of the ATLAS Inner Detector at the LHC

S. Martí IFIC-València On behalf of ATLAS coll. RD 11, Florence 6/July/2011

The ATLAS experiment at the LHC

- LHC: Large Hadron Collider
 - Proton-proton collisions at 900 GeV (2009)
 - Proton-proton collisions at 7 TeV (2010-11)
 - Lead-lead ion collisions (2010)
- ATLAS: general purpouse experiment
 - Tracking system (Inner Detector)
 - Efficient and accurate charged particle reconstruction
 - Calorimeter system
 - Electromagnetic
 - Hadronic
 - Muon system
 - Air core toroid

Inner Detector: tracking system

- The Inner Detector (ID) is the main tracking system of ATLAS. The ID comprises 3 different subsystems embedded in a 2T axial field.
 - Pixel (3 measurements/track)*
 - SCT (8 measurements/track)*
 - TRT (30 measurements/track)
- Each subsystem is composed of:
 - Barrel (B)
 - 2 end caps (A,C)
- Sensor dimensions and resolutions
 - # channels

Subdetector	r (cm)	Elements	Resolution	hits/track	channels
		size	(X * Y)	(average)	
Pixel	5 – 12.5	50 µm *	10 µm *	3	80 x 10 ⁶
(silicon pads)		400 µm	115 µm		
SCT	30 – 52	80 µm *	17 µm *	8	6.3 x 10 ⁶
(silicon microstrips)		12 cm (stereo)	580 µm		
TRT	56 – 107	4 mm	130 µm	30	3.5 x 10⁵
(Transition Radiation)		(diameter)			

* There are some regions with module overlaps

Detector status

Overall active detector

subdetector	# channels	Approx. Operational
Pixel	80 M	97.3 %
SCT (microstrips)	6.3 M	99.2 %
TRT (Transition Radiation Tracker)	350 k	97.1 %

- Pixels:
 - 48 disabled modules (out of 1744)
 - 6 of them in the innermost layer (B-layer)
 - Permanent failures: mixture of HV, LV and optical connection problems
 - Temporary failures: optical transmitters, busy read out, etc.
- SCT:
- 24 disabled modules (out of 4880)
 - 14 of them in the same cooling loop in outermost end-cap disk
- Some failures also due to optical transmitters
- TRT:
- Most failures due to HV
- Barrel 1.5%, end-cap C 0.2%, end-cap A 1.1%

Pattern recognition

- Two-stage pattern recognition
 - Inside-out \rightarrow pixel seeding + outward extension
 - Outside-in → TRT track segment seed + inward extension
- Performance at the different levels of the track reconstruction
 - Seeding, track candidate fitting, solving ambiguities
- A robust pattern recognition is a key ingredient for good tracking
 - Changing conditions of noisy/dead modules
 - Varying detector calibrations and alignment
- Excellent performance (already with the early ATLAS data)

Precision positioning of space points

- Precise pixel clusterization includes corrections for:
 - Incident angle, Lorentz angle, charge sharing, time-over-threshold, etc.

Particle ID

10⁵

10⁴

 10^{3}

 10^{2}

10

• Particle ID in the Pixel detector thanks to dE/dx

- Using cluster charge info.
- Bands visibles for:
 - π⁺,π⁻
 - k⁺,<u>k</u>⁻
 - p, p
 - Deuterons

- High threshold hits: Transition radiation onset (for electron ID) & dE/dx

ASPrelimi

.5 -1

0.5

1

1.5

2 2.5

qp(GeV)

0

-0.5

່ວ:

dE/dx (MeV

Tracking and vertex performance of ATLAS Inner Detector

Material studies

- The precise knowledge of the material budget within the tracking volume is mandatory for an accurate track reconstruction
 - Photon conversions & hadronic interactions allow to study the material
- Photon conversions allow for:
 - Very precise estimate of the material
 - "calibrate" w.r.t. well known reference object as beam pipe.
 - Understand geometrical data/MC differences

supporting structures, cooling pipes, power cables, ...

Hadronic interactions

- Reconstruction of hadron interaction vertices is a precise method for a detector tomography
 ATLAS Preliminary VS = 7 TeV 1 and 1 a
 - Reveal the true material
 - Excellent vertex resolution is mandatory
- Material uncertainty in simulation
 - Better than 5% in barrel region
 - At the 10% level in the end-caps
 - Study of systematics: ongoing

[Hadronic interactions in the vicinity of a pixel module]

05/07/11

Tracking and vertex performance of ATLAS Inner Detector

Inner Detector alignment

- The limited knowledge of the alignment constants should not lead to a significant degradation of the track parameters beyond the intrinsic tracker resolution, nor introduce biases
 - Initial physics goal: maximum 20% degradation
 - Mechanical assembly precision

[maximum allowed random misalignment of the silicon modules]

- Higher accuracy is required for precision physics measurements
 - A 15-20 MeV precision in the W mass requires 1µm alignment precision.
 - Higgs search, if $180 < m_h < 400 \text{ GeV} (H \rightarrow ZZ \rightarrow 4 \ell)$
 - B-tagging: impact parameter & mass
- Alignment using 7 TeV data: hard momentum (minimize scattering)
 - Calibration stream: filtered online by the High Level Trigger
 - Select isolated collision tracks with $p_T \text{ cut} > 9 \text{ GeV}$
 - Cosmic rays:
 - Triggered during empty LHC proton bunches (same detector conditions)
- Beam spot constraint
 - As well as survey assembly data, MS momentum and E/p constraints.

	pixels		SCT	
ation	barrel	endcap	barrel	endcap
rΦ(μm)	7	7	12	12
z (µm)	20	100	50	200

ID structures and alignment levels

- The alignment proceeds from large structures to module level with increasing granularity of structures and number of degrees of freedom
 - Barrel and/or end-caps
 - Barrel layers and end cap disks/wheels
 - Silicon modules and TRT wires

	structures			Corr. Size
	pixel	SCT	TRT	μm
Level 1	1	3	3	1000
Level 2	12	22	96	100
Level 3	1744	4088	350848	10

	struc	DoFs	
	pixel	SCT	#
Level 1	1	3	24
Level 2	12	22	204
Level 3	1744	4088	34992

	TF	RT	DoFs	
	Barrel	End cap	#	
Level 1	1	2	18	
Level 2	96	80	1056	
straw	105088	245760	701696	

Aligned DoFs			
pixel	SCT	TRT	
10464	24528	701696	

	10	7	11	1
05	/0	1	L	1

Alignment at module (wire) level

- Alignment of pixel modules including module deformations
 - Surveyed module shape and parameters stored in DB

TRT wire-by-wire alignment after module alignment

Tracking and vertex performance of ATLAS Inner Detector

Alignment results

Residuals (showing only pixel module residuals)

1797}279801479933799338014801538016480401804818061806380664807182248233824248488251825182738273827685306830218304 Run number

Detector stability:

ID alignment validation using physics observables

Detected a relative rotation of the solenoid and ID axis: 53 µrad !

ID alignment validation using physics observables

Detected a relative rotation of the solenoid and ID axis

05/07/11

Vertex reconstruction

- Precise vertex reconstruction is necessary to achieve the physics goals: specially with event pile-up
- Beam spot is routinely computed: online and offline
- Iterative vertex finder & adaptive fitter
- Vertex resolution extracted with real data: split vertex
- Applications
 - PV counting
 - Luminosity
 - Jet vertex fraction
 - pile-up
 - B-tagging

05/07/11

Heavy ion data

• Tracking in the Heavy Ion collision data was quite challenging

- Very high track multiplicity
- Anticipation of the pile-up events
- Tighten hit requirements
 - Keep fake rate low
- Overall tracking performance was excellent

05/07/11

Tracking and vertex performance of ATLAS Inner Detector

17

Future: IBL

- Upgrade of the detector with the Insertable B Layer (IBL)
 - 4th layer of pixel detector:
 - To be inserted between a new beam pipe and the pixel B layer
- IBL Goals
 - Tracking robustness & B tagging (radius 2.5 cm)
 - Cope with luminosity increase (2·10³⁴ cm⁻² s⁻¹)
 - Radiation dose (current B layer may become inefficient)
 - Add low material (adjusted to 1.5% of X_0)
- Installation: foreseen for next shutdown
 - Beam pipe replacement

Future: IBL

- Upgrade of the detector with the Insertable B Layer (IBL)
 - 4th layer of pixel detector:
 - To be inserted between a new beam pipe and the pixel B layer
- IBL Goals
 - Tracking robustness & B tagging (radius 2.5 cm)
 - Cope with luminosity increase (2·10³⁴ cm⁻² s⁻¹)
 - Radiation dose (current B layer may become inefficient)
 - Add low material (adjusted to 1.5% of X_0)
- Installation: foreseen for next shutdown
 - Beam pipe replacement

<u>Summary</u>

- The ATLAS Inner Detector is operating very efficiently
 - Pixel 97.3%; SCT 99.2%; TRT 97.1%
 - Up time (during collisions): Pixel 96.7%; SCT 97.5%; TRT 100%
- Very precise clustering thanks to:
 - Incident angle, Lorentz angle, time-over-threshold, charge sharing, etc.
 - Very good spatial resolution
- Particle ID: dE/dx in Pixel and TRT + TRT transition radiation
- Accurate tracking and vertexing
 - Improved understanding of the detector material within ID
- Alignment: > 700 k degrees of freedom !
 - Good understanding of the detector distortions
- Nice performance in physics observables
 - Z mass (and J/ ψ , K_s,...)
- Looking forward to great physics results and discoveries!