

Irradiations on DEPFET-like test structures

10th International Conference on Large Scale Applications and Radiation Hardness of Semicomduetor Detectors *mpi*

halbleiterlabor

Florence 6-8 July 2011

Andreas Ritter, Ladislav Andricek, Teresa Hildebrand, Christian Koffmane, Hans-Günther Moser, Jelena Ninkovic, Rainer Richter, Andreas Wassatsch, Gerhard Schaller

- Motivation: DEPFETs for Belle 2 → pixel detector by B. Schwenker (next talk)
- 2. What is a DEPFET?
- 3. Ionizing radiation on MOS devices
- 4. Possible pixel layout \rightarrow voltage cross sections
- Threshold voltage shift dependance on gate voltage
- 6. Summary and Outlook

Motivation: DEPFETs for Belle 2

Motivation: DEPFETs for Belle 2

DEPFETs for Belle 2

> DEPFETs have a good SNR \rightarrow thin sensors achievable (75 µm, avoids multiple scattering)

➢ Charge collection (next slides...)
possible in "OFF"-state → low power dissipation → cooling via end flanges and airflow

Bulk damage: ~10¹¹ neq/(cm² * yr) type inversion chargeloss (trapping)

■leakage current, shot noise \rightarrow fast readout (20µs frame time)

Motivation: DEPFETs for Belle 2

➢ PXD (DEPFET matrix) suffers from ionizing radiation, estimated 1...2 Mrad/yr (10...20 kGy/yr)

For detailed PXD discussion see talk of B. Schwenker

DEPFET WORKING PRINCIPLE

1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>

- 1. DEPFET = <u>Depleted</u> <u>Field</u> <u>Effect</u> <u>Transistor</u>
- 2. Consider a normal FET

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal FET
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal FET
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal FET
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal FET
- 3. Sidewards depletion
- 4. Charge creation and collecting

Working principle of a DEPFET

IONIZING RADIATION AND SIO₂

Influence of ionizing radiation

Surface defects – Defects in silicon dioxide

- 1. Trapped oxide charge
 - a) e⁻/h⁺ pairs created
 - b) Electrons have high mobility, swept out of the oxide, holes get trapped
 - i. E' center \rightarrow change in V_{threshold}
- 2. Dangling bonds
 - a) Hydrogen is used to saturate open bindings (dangling bonds) during production
 - b) lonizing radiation frees protons
 - c) Protons travel to defects (near Si-SiO₂ interface)
 - d) Creation of H_2 and dangling bonds
 - Increase in noise(1/f), and subthreshold swing S. Decrease in transconductance g_m

PIXEL LAYOUT AND VOLTAGE DEPENDANCIES

Motivation - Possible Pixel Layout

Motivation (II)- Possible Pixel Layout

Motivation (III)- Possible Pixel Layout and Potentials

Motivation (IV)- Possible Pixel Layout and relevant cross

sections

Motivation (IV)- Possible Pixel Layout and relevant cross

sections

Only one Clear Gate volatge avialable → flat region is favoured

Characteristics of thin oxide structures:

- thin and thick Si₃N₄
- •SiO₂ thickness is the same for all
- •Central device: Gate Controlled Diode
- •14 Transistor (=2x7), with diff. Gate length and width
- •Doping profiles similar to Clear Gate

Thicker nitride could be a solution to the problem at hand.

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Thicker nitride could be a solution to the problem at hand.

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Clear Gate Results, -5 V during Irradiation

Clear Gate Results, **0 V** during Irradiation

Clear Gate Results, +2.5 V during Irradiation

Clear Gate Results, +5 V during Irradiation

Change in threshold voltage shift due to certain Gate voltages **(thick nitride)**

Change in threshold voltage shift due to certain Gate voltages (thin nitride)

Comparison between thin and thick Si₃N₄

Thin Si₃N₄

- Max. threshold voltage shift
 - 13.8 V @ 3 Mrad

Thick Si₃N₄

- Max. threshold voltage shift
 - 9.4 V @ 5 Mrad
 - 8.6 V @ 3 Mrad

Thin Si₃N₄

- Max. threshold voltage shift
 - 13.8 V @ 3 Mrad
- Flatness
 - Δ along Gate voltage = 1.1 V
 @ 3 Mrad

Thick Si₃N₄

- Max. threshold voltage shift
 - 9.4 V @ 5 Mrad
 - 8.6 V @ 3 Mrad
- Flatness
 - Δ along Gate voltage = 1.3 V
 @ 5 Mrad

Interface traps and influence on subthreshold swing S

Interface traps and influence on transconductance g_m

<u>Summary</u>

- Radiation hardness of Clear Gate region is more complex, intra pixel deviations
 - Investigate different thicknesses of nitride
 - > Adapt pixel design
- Inhomogeneous irradiation along z can be compensated via segmentation of modules
- > Thicker nitride is better in case for the Clear Gate voltage

<u>Outlook</u>

 Additional radiation campaigns with diff. nitride layer thickness will be conducted

<u>Acknowledgement</u>

KIT for x-ray tube and staff

Thank you

(b) Fe⁵⁵ spectra after 8MRad S. Rummel

- Gate region exhibits a more homogeneous voltage region than the clear gate (very thick oxide in between)
 - \rightarrow common shift adjustable
- Problem: inhomogeneous irradiation along z in the detector
 - → Solution: segmentation of module
- Irradiations with diff. Nitride thicknesses show good results for thinnest layer.

Trapping in insulator layer

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999 $+V_{G}$

- 1. Holes in oxide to Si-SiO₂ interface
- 2. Holes in Si_3N_4 and electrons from SiO_2 to N-O interface
- 3. Recombination rate in Si_3N_4 lower than in SiO_2 (+trap density precursors)

 \rightarrow more e trapped at N-O

4. Build-up of e^{-1} reduces field in oxide \rightarrow saturation

-V_G Field always present

Thick Si₃N₄

→ Reduces field in ox (capacitance voltage divider) → saturation

Threshold voltage shifts due to Gate voltages

Threshold voltage shifts due to Gate voltages

