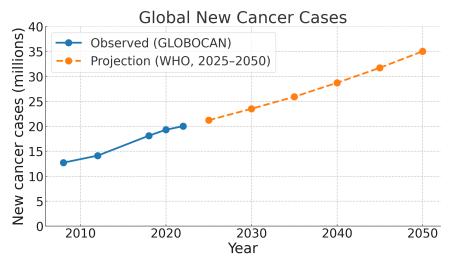


High-Performance modular TOF-PET imager

Rok Pestotnik, Jožef Stefan Institute, Ljubljana, Slovenia

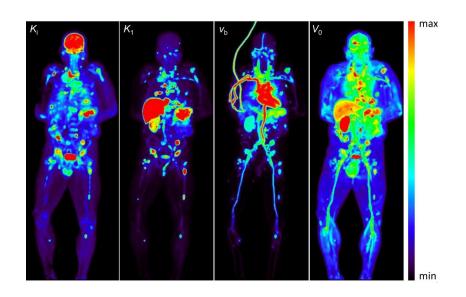


FAst Timing Applications for Nuclear Physics and Medical Imaging Catania - Italy, 8 - 10 October 2025

Motivation

Need for early diagnosis and treatment

Strengthening medical imaging capacity <u>resolution</u> was adopted by the WHO in May 2025

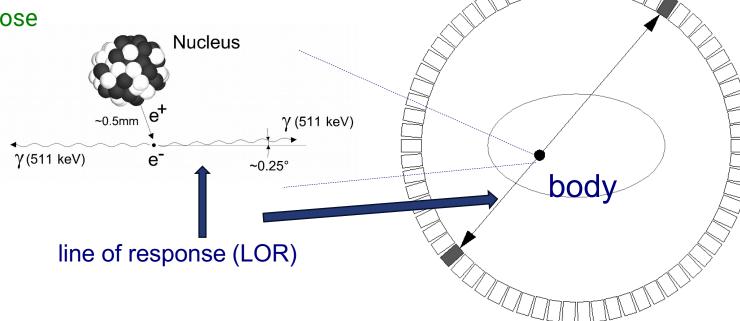

Expected to reduce the rising burden of cancer and other diseases, especially in low- and middle-income countries.

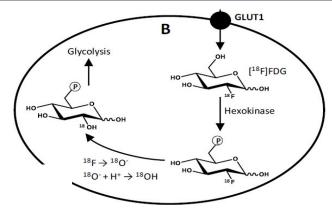
MRI, X-ray, CT: anatomic imaging Need for functional imaging

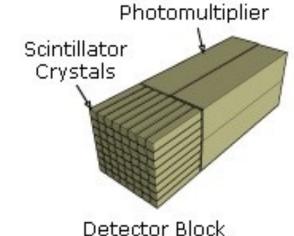
PET (Positron Emission Tomography)

- Leading method
- Also needed in other medical fields
- costly (min. 2 MEUR/ device)

Positron emission tomography (PET)


In-vivo imaging of biological processes via detection of 511 keV annihilation γ rays

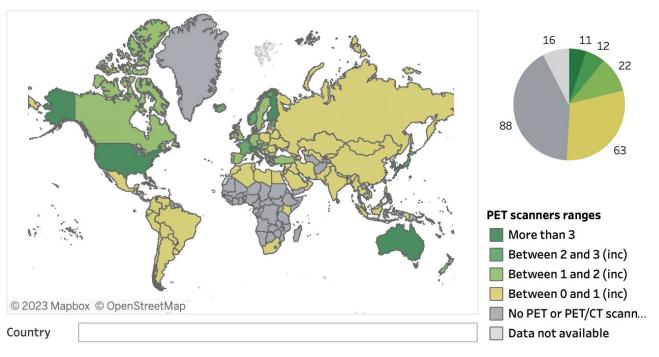

By using bio-markers containing a beta+ emitter


Fluorodeoxyglucose (FDG) is the

most commonly used marker - indicates the uptake

of glucose

detector ring


Global Imaging Access and Impact

PET scanners (per 1 mil)

Countries with Population Number of PET scanners (per 1 mil) Countries PET scanners (mil) PET scanners Regions 212 109 7,674M 5,672 0.739 6

Access gaps in low- and middle-income countries

- Severe shortages of infrastructure and workforce
- Poorer disease outcomes
- Imaging is vital for managing noncommunicable and infectious diseases

Economic and health benefits:

- Better imaging could prevent 9.5 million deaths in 10 years
- Estimated return of €12-43 for every €1 invested

Motivation for Fast TOF PET

- Paradigm shift in medicine from:
 - From the Treatment of obvious disease

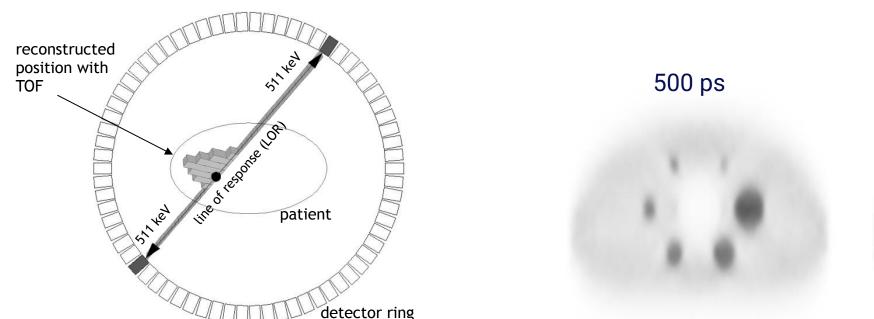
This project has received funding from the European

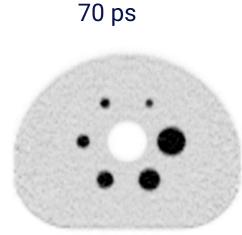
Union's Horizon Europe research and innovation

programme under grant agreement No 101099896

- To early diagnosis/prevention
- This leads to more stringent requirements on PET
 - Sensitivity
 - Specificity
- Targeted Radionuclide Therapy (TRT) & Theranostics
 - introduced an urgent need for more widespread and accurate PET

Time-of-flight Positron emission tomography (TOF-PET)

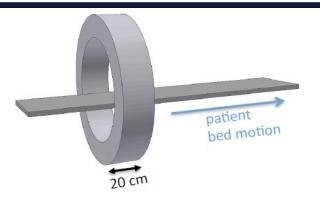


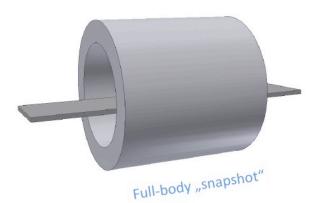

Limits the reconstructed position of annihilation by localizing source position along the LOR

Improves the quality (contrast-to-noise ratio) of reconstructed images

$$\Delta t \sim 66 \text{ps} \rightarrow \Delta x = c_0 \Delta t/2 \sim 1 \text{cm}$$

 Δt = coincidence resolving time, CRT





Current situation

- Standard clinical scanners are sub-optimal:
 - Cost of equipment and siting costs, limited access, and performance.
- Novel long axial PET scanners offer a very attractive solution in terms of
 - · Increased sensitivity and
 - Enabling fast pharmacokinetics/pharmacodynamics.
- They pose significant challenges both.
 - Financially: Cost of equipment and operation
 - Logistically, integration with conventional PET scanners.

State-of-the-art in TOF

- Clinical scanner:
 - Siemens Biograph Vision PET/CT → 214 ps

- Laboratory measurement:
 - Gundacker et al, Phys. Med. Biol. 65 (2020) 025001 (20pp)
 - $2 \times 2 \times 3 \text{ mm LSO} \rightarrow 58 \text{ ps*}$
 - $2 \times 2 \times 20 \text{ mm LSO} \rightarrow 98 \text{ ps*}$

https://www.siemenshealthineers.com/molecularimaging/pet-ct/biograph-vision

* measured with high power readout electronics not scalable to large devices

Gamma detectors for PET

Scintillating crystal:

 converts gamma energy into optical photons

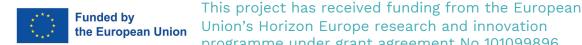
Photodetector

converts optical photons into electrical pulses

Time resolution in TOF PET limited by

- scintillation light emission
 - rise and decay time
- optical photon travel time spread in the crystal
- photodetector response
- readout electronics

Addressed by 10 ps challenge

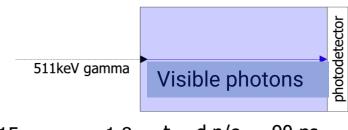

https://the10ps-challenge.org/ Paul Lecoq et al 2020 Phys. Med. Biol. 65 21RM01

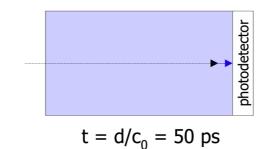
Effective sensitivity
$$S_{{
m eff},D} \propto \eta_{
m det}^2 \; \eta_{
m geom} \; rac{D}{\Delta t}$$

programme under grant agreement No 101099896

- detection efficiency η_{det} of the detector
- $\eta_{\rm geom}$ the geometrical efficiency (angular coverage)
- D the diameter of the object imaged

Important: Optimize detector CTR to maximize sensitivity


Limitations on timing due to optical travel time


- Optical photons, produced in the crystal, need to reach the photodetector
- Inside the crystal, optical photons travel more slowly than gamma rays
- Intrinsic travel time spread due to different gamma interaction depths

At the entrance

or Exit of the crystal

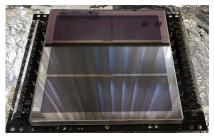
$$d = 15 \text{ mm}, n = 1.8$$
: $t = d \cdot n/c_0 = 90 \text{ ps}$

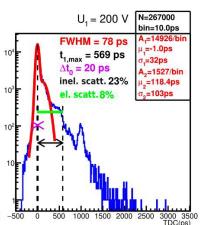
Different optical photon arrival time!

$$\rightarrow \Delta t = 40 \text{ ps}$$

- Can, in principle, be corrected for by:
 - Measuring the depth of interaction (DOI) -> 20 mm crystals DOI 2,7 mm, CTR improves from 132 to 85 ps
 - Using Cherenkov radiation DOI: <u>10.1109/TRPMS.2022.3202138</u> Potential of a Cherenkov TOF PET scanner
 - Using shorter crystals → multi-layer configuration

Choice of photodetector





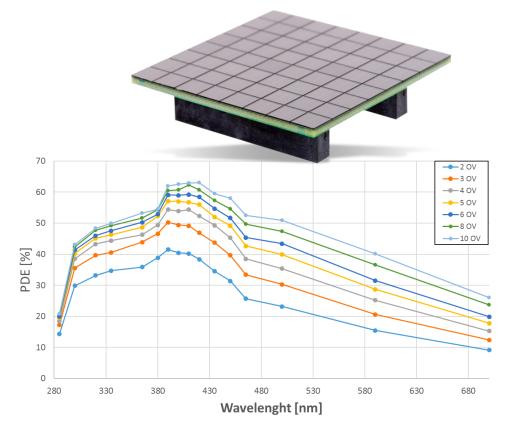
Microchannel plate PMT - Incom LAPPD GenII 20x20cm2

PDE ~30%, SPTR FWHM 80 ps

Monolithic ground plane anode, capacitively coupled to the readout electronics on the external side

S. Korpar, PD07

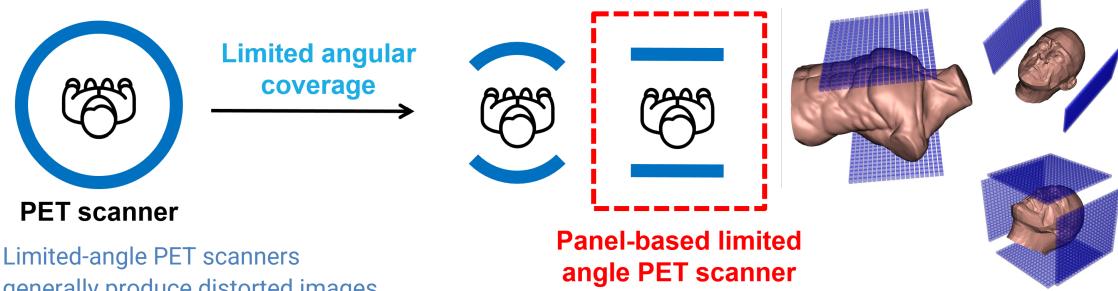
R. Dolenec, RICH 2025


Funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101099896

Silicon photomultipliers – 3x3 mm

PDE~65%


SPTR FWHM ~ 100 ps

Next generation scalable time-of-flight PET

Superb time resolution enables simplifications in the scanner

generally produce distorted images with artefacts unless they have good time-of-flight information

The angular sampling requirement to obtain distortion-free images decreases S. Surti, J. S. Karp, Physica Medica 32 (2016) 12–22

G. Razdevšek et al., "Multi-panel limited angle PET system with 50 ps FWHM coincidence time resolution: a simulation study," in *IEEE* TRPMS. doi: 10.1109/TRPMS.2021.3115704.

Union's Horizon Europe research and innovation

programme under grant agreement No 101099896

70 ps 500 ps

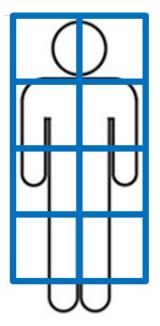
Potential benefits

Mobility

Portable or bedside PET imaging

Flexibility

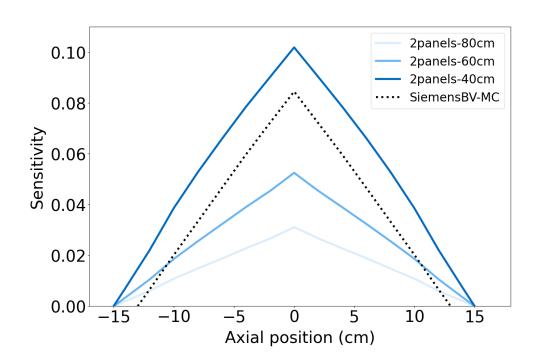
Adjustable FOV and sensitivity


Modularity

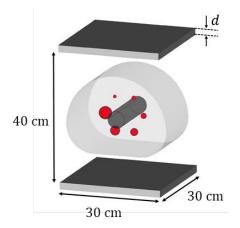
 Combining multiple panels → multi-organ/total-body PET scanner

Accessibility

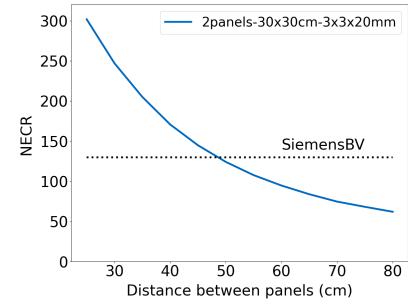
- Reduced manufacturing cost (4-5x lower) and complexity
- More devices, Higher throughput of patients, decreased waiting times, improve cancer survival rates



Simulations of a limited angle system - Sensitivity and NECR


2 panels 30x30 cm² Sensitivity for different panel-panel distances

This project has received funding from the European


Union's Horizon Europe research and innovation

programme under grant agreement No 101099896

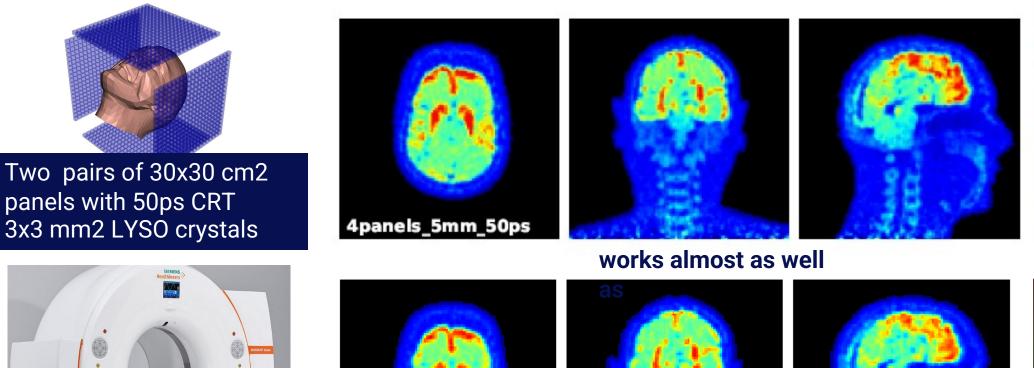
Geant4/GATE → Monte Carlo simulations of digital phantoms and different scanner designs

CASTOR → image reconstruction with Maximum Likelihood Expectation Maximization (MLEM) algorithm

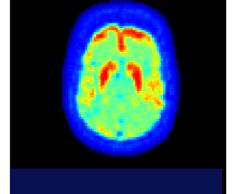
Pestotnik, FATA 2025

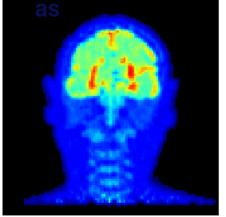
Simulation - Enabling Open Geometry systems

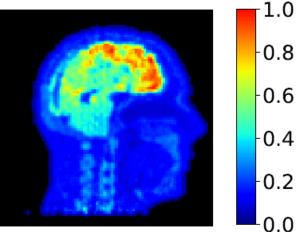
1.0

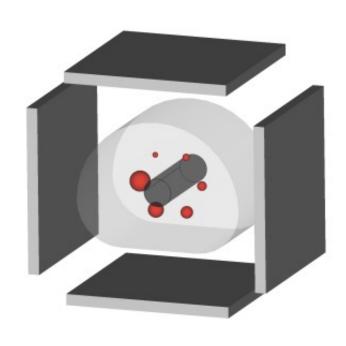

-0.8

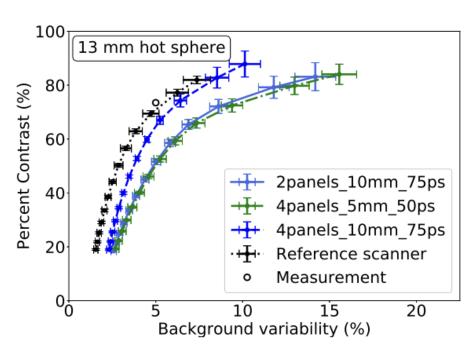
0.6


-0.4

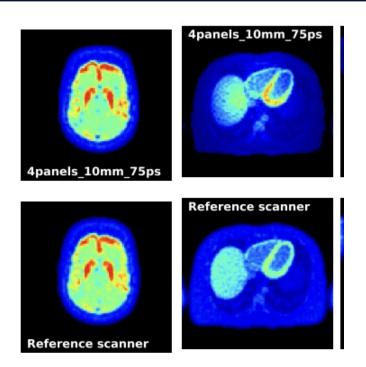

-0.2


0.0





Simulation study – qualitative analysis



Simulated arrangement of 30x30 cm2 flat panel detectors

Percent contrast versus background variability

Reconstructed images of a torso and head for the flat panel detectors and the reference scanner Siemens BV

Next generation scalable time-of-flight PET

Address PET challenges by decreasing different contributions using fast CTR

PetVision Project https://petvision.org/

European Innovation Council Pathfinder Open 2022 Call

Aim: Improve (SNR) without increasing the cost associated with axial coverage by resorting to very sparse angular coverage of the patient and long axial field coverage

- Front-end electronics: Develop a low-noise, high-dynamic-range ASIC with a time resolution of 20 ps & on-chip TDC
- Improve the SiPM sensor PDE and increase the geometrical efficiency
- Explore 2.5D integration with the photo-sensor to achieve sub-100 ps CTR
- Demonstrate the functionality by building a prototype

The European Innovation Council

Europe's flagship innovation programme to identify, develop and scale up game changing innovations

Project partners

David Gascon Chip design

Rok Pestotnik
Coordination, Design
Integration, Reconstruction

Alberto Gola
Photo sensors
2D integration

Jose Benlloch Readout Electronics Data Acquisition

David Sanchez SME: Mechanics & Software

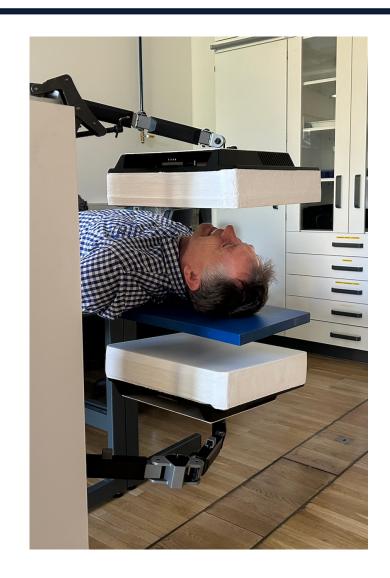
Georges El Fakhri Associated P. Hospital: Design & Validation

Yale

Rafael Ballabriga Associated P., Chip design

Wolfgang Weber Hospital: Validation

Breakthrough innovations



New gamma sensor with improved coincidence timing resolution:

- 200 ps -> 75ps
- enabling new geometries

Key improvement: 10 x image sensitivity*

Images of comparable quality with many fewer sensors

*wrt. the state-of-the-art reference scanner

From Limited-angle panels to Total-body

Increased sensitivity by larger panels

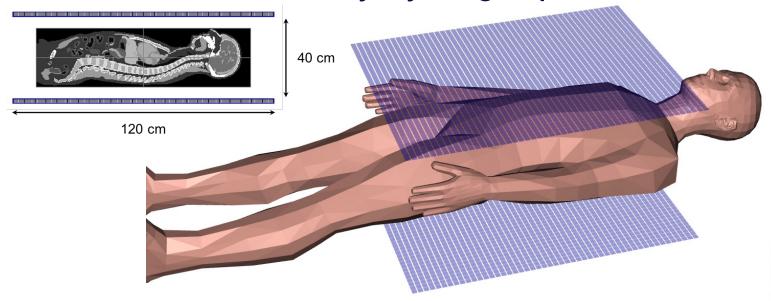
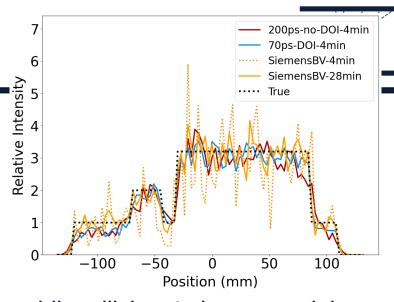
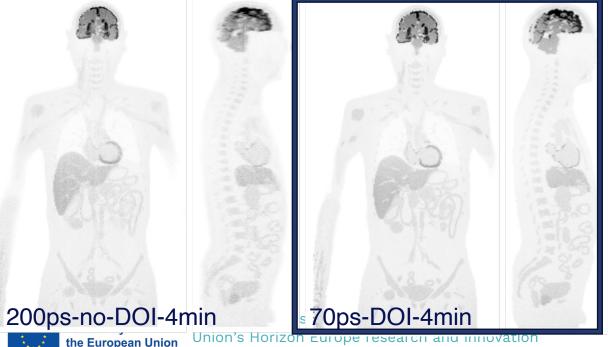


Image of a reconstructed 3 mm slice of a digital phantom acquired by two 120x60cm2 panel detectors (above and below the patient), assuming 100 ps TOF resolution and 10 mm LYSO scintillator thickness.



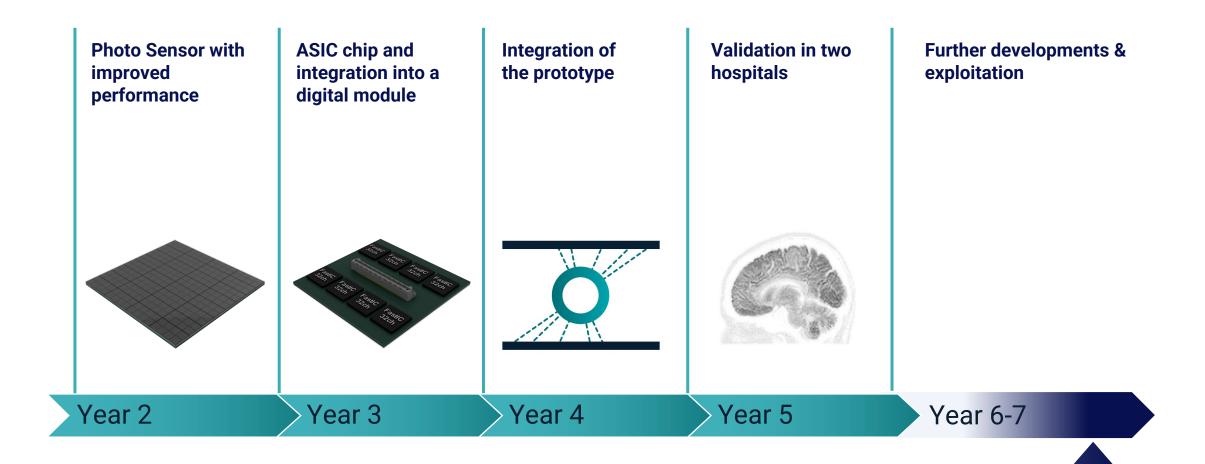
Increasing sensitivity by DOI


- TOF crucial to compensate for limited angular sampling,
- **DOI** improves image quality by mitigating the parallax error.

Simulation of a Highly anatomically detailed phantom (XCAT)

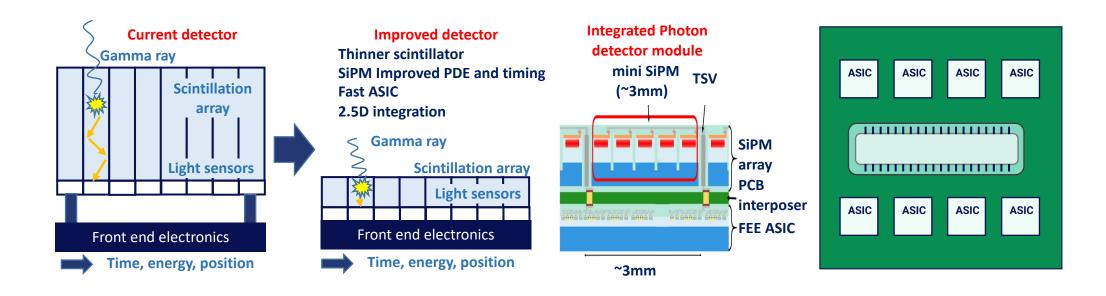
- 2x 120x60 cm2 panels
- Scan time: 4 min
- No filter applied

2-panel PET system can achieve image quality comparable to clinical scanners while utilizing 4x less material.



Union's Horizon Europe research and innovation programme under grant agreement No 101099896

Timeline

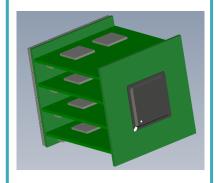


Fast CTR PET module

How do we achieve such a good CTR

Technology Choices	Current PET	PetVision	
Photosensor: Latest SiPM cell NUV-HD	Traditional technology	Through silicon via (TSV)	
PDE up to 70%, SPAD SPTR 20 ps FWHM			
Better sensitivity: Increase active area	71%	92%	
Better timing: decrease C _{det}	3mm pad - SPTR 150 ps	1.5mm pad – SPTR <50 ps	
Front-end: fast timing low noise ASIC	e.g. PETsys	PetVision chip	
Current mode: Linear Time over Thresh. with high dynamic range	180 nm CMOS Front-End TDC	65 nm CMOS Front-End FastIC TDC	
CTR with 10mm LYSO (FWHM)	120 ps	Summation in clusters of 4 ch. 75 ps	
Integration of photosensor and ASIC	Wire bonding	2.5D integration (SiPM + interposer + CMOS)	
		Medium-density interconnection SoC and Flip-Chip	
Scintillator:	Co-doped L(Y)SO:Ca:Ce		
Pixel Size	3 x 3 x 20 - 25 mm ³	3 x 3 x 10 mm ³ -	
	Reduced parallax error	Compromise between sensitivity and CTR/ parallax error	
Detector design	Full ring	Panels	
Funded by the European Union This project has received funding from the European Union Union's Horizon Europe research and programme under grant agreement	d innovation Pestotnik, FA	ATA 2025 24	

On the way and beyond PetVision



ARIS-P

3x3mm2 Photo **Sensor with** improved performance

FastIC+ ASICs on the plugin cards

Integration of the smaller prototype 10 x 10 cm2

Validation in a hospital

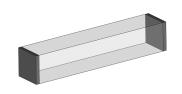
Project no. J7-50229

Year 1

DOI from the

sensors

astsight


Year 2

1.5x1.5 mm2 Photo Sensor photon yield from the first and second

Year 3

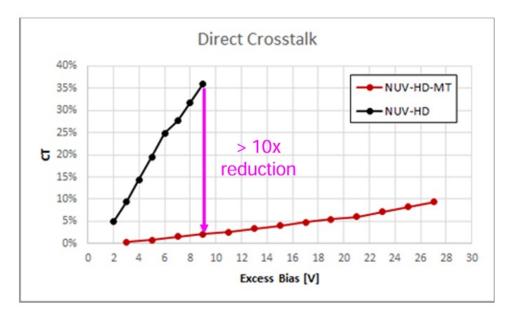
20-25mm crystals **Dual-sided readout**

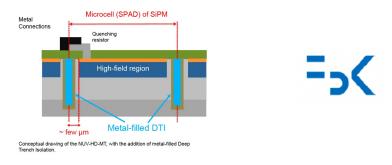
Year 4

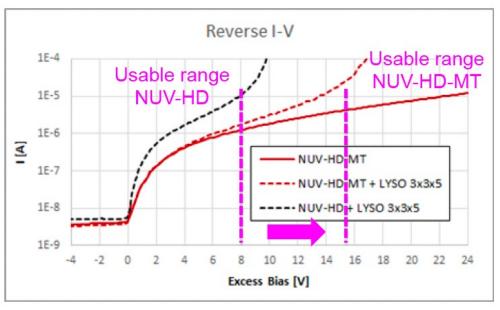
FastSight ASICs to combine info from both sides

Year 5

Integration and validation in a hospital


FBK, I3M, JSI, ICCUB

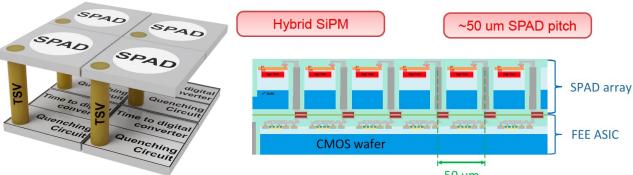

Reduction of optical crosstalk of SiPMs



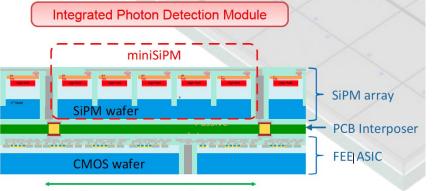
- FBK and Broadcom: new NUV-HD-MT technology with metal-filled Deep Trench Isolation
- Reduction of c-talk increases the maximum usable excess bias of the SiPM

Reduction of optical crosstalk probability in NUV-HD-MT, compared to the "standard" NUV-HD. Measurement without encapsulation resin, i.e. *only considering internal crosstalk probability*.

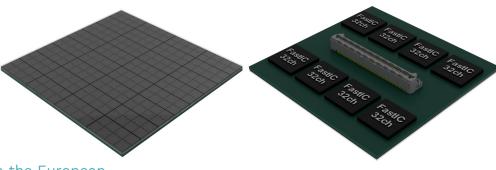
Reverse IV measured on a 4x4 mm² NUV-HD-MT SiPM with 45 um cell pitch under different conditions.



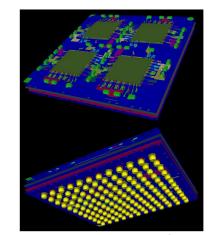
Integration: Enabling TSV technology



- Allows for high-density interconnections to the front-end and high-segmentation.
- Technological advancements in the SiPM production at various levels are necessary.

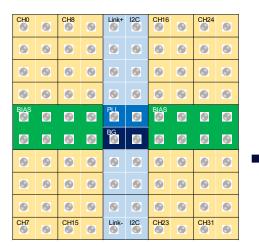


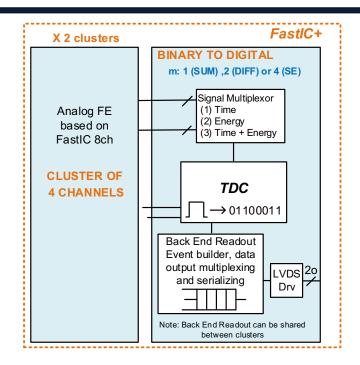
Hybrid SiPM: Custom sensing SiPM + CMOS processing layer, exploit optimal segmentation – Digilog project



1 - 3 mm interconnection pitch

The 2.5D integrated module (50x50 mm2)


Funded by the European Union


Next generation ASICs

- FastIC: Highly configurable ASIC for Fast Timing applications collaboration between the University of Barcelona and CERN
- FastIC+: integration of 25 ps bin TDC integration on FastIC
 - First production finished, currently exploitation of functionalities
 - See the following talk by David Mazzanti
- Next step: 32-channel ASIC (PetVision) with pixelated structure
 - For 2.5D (BGA, flip-chip, etc) or 3D integration

FastIC 32

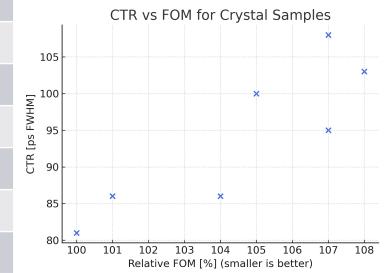
PCB interposer

ASIC: BGA or flip-chip

Selection of the scintillator

Samples 2.8x2.8x10mm to fit on the 3x3mm2 HD-NUV-MT SiPMs

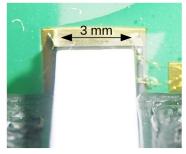
- Slight differences in the samples
- 25% difference in the CTR


Sample	Rel. Light Yield [%]	Decay Time [ns]	Rise Time [ps]	FOM [%]	CTR [ps FWHM]
Α	97	34.2 ± 0.8	107 ± 25	104	86
В	93	35.0 ± 0.7	109 ± 46	105	100
С	90	34.3 ± 0.4	122 ± 34	107	108
D	99	36.1 ± 0.7	111 ± 39	107	95
Е	100	31.8 ± 0.7	83 ± 26	100	81
F	107	34.8 ± ?	114 ± ?	101	86
G	104	38.6 ± ?	130 ± ?	108	103

scintillation rise time scintillation decay time

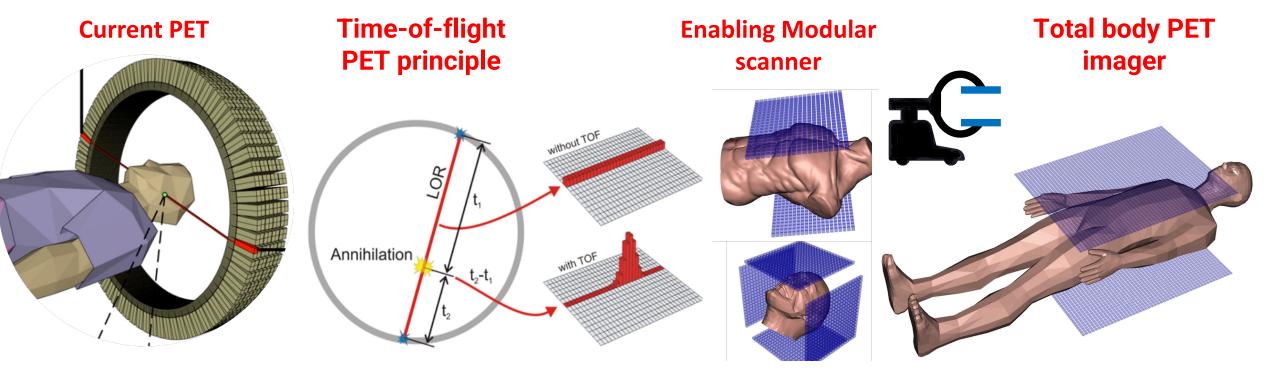
photodetector + crystal size contribution

$$\mathsf{CTR} \approx 3.33 \cdot \sqrt{\frac{\tau_{\mathsf{d,eff}} \cdot (1.57 \cdot \tau_{\mathsf{f}} + 1.13 \cdot \sigma_{\mathsf{SPTR} + \mathsf{PTS}})}{\mathsf{LTE} \cdot \mathsf{PDE} \cdot \mathsf{ILY}}}$$


S. Gundacker et al 2020 Phys. Med. Biol. 65 025001 Number of detected scintillation photons (detection efficiency x scintillation light yield)

FOM = SQRT(Rise * Decay / LY)

Alignment No protection on the SiPM



Summary

PetVision project is developing a mobile, accessible, flexible, modular PET scanner, based on two opposite detector panels with exquisite TOF resolution

Enable total body imaging:

Very early diagnosis of cancer, use of PET in operating rooms, guided surgery, proton therapy, cardiac and brain applications, and **effective personalized radionuclide cancer therapy**.

https://youtu.be/Uksh-YXpV8k

"We are what we repeatedly do. Excellence, then, is not an act, but a habit." - Will Durant.

Pioneering the Future of Cancer Diagnostics

