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Within 2025

Mid  2026

• Two laser systems 
(L1 and L2)

• Three laser outputs
• Four experimental stations 

(ES1, ES2, ES3 and ES4)

L2
L1

ES1

Electron temperature [K] 1010 – 1011 (MeV range)

Electron density [cm-3] 1021 – 1024

Ion temperature [K] 107 – 109

Compressed matter density [cm-3] Up to 1026

I-LUCE

ES2
ES3

ES4

WDM

CM

I-LUCE
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Astrella femtosecond laser (L1)

Laser Parameter Values

Output Energy [mJ] 5-10

Pulse Duration [fs] 35 (7 or less after beam compression)

Repetition Rate [Hz] 1000

Spectrum (FWHM) [nm] ≥ 70

Central Wavelength [nm] 800

Beam Profile Gaussian; M2 < 1.23

Power stability [RMS] 0.5

Contrast Ratio > 103 (pre-pulse); > 102 (post-pulse)

Beam diameter (mm) 13

Maximum Intensity on Target [W/cm2] 5 × 1017 – 1018

Potential applications:
- test bench for detectors to be employed with the main laser system
- low power laser for high resolution plasma diagnostics of L2
- stand-alone laser system
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Electric field temporal visualization
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M Schultze et al 2007 New J. Phys. 9 243
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The I-LUCE two laser systems (L2)
Thales Quark System 320 TW

Laser Parameter Low Power Mode High Power Mode

Output Energy [J] ≥ 1.5 ≥ 8

Pulse Duration [fs] ≤ 23 ≤ 23

Peak Power [TW] 45 320

Repetition Rate [Hz] 10 2.5

Focusing surface [um2] 36 36 or better

Spectrum (FWHM) [nm] ≥ 40 ≥ 40

Central Wavelength [nm] 800 ± 10 800 ± 10

Beam Profile Super Gaussian Top Hat Super Gaussian Top Hat

Strehl Ratio > 80% with deformable mirrors > 80% with deformable mirrors

Contrast Ratio @ ps < 1:108 – 1:1010 < 1:108 – 1:1010

Energy stability [% rms] ≤ 1.5 ≤ 1.5

Maximum Intensity on Target [W/cm2] 1 × 1020 9 × 1020
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Thales Quark System 320 TW
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Beam transport to the experimental area

E1 E2
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The radiation production interaction chamber

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1000 mm

- one interaction chamber for proton/ions and 
electrons

- a partially reflective mirror (beam splitter)
- three different interaction points in the first phase
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Ion acceleration station

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1350 mm

Micrometric precision and 
repeatability are guaranteed 

for the five degrees of 
freedom

 Up to 900 targets
 Max repetition rate: 3 Hz
 Five degrees of freedom
 XY = 105 mm @10 µm resolution, >20 mm/s
 Z = 25 mm @1 µm resolution, < 10 mm/s
 Tilt and rotation, ±2° @ 20 µrad resolution
 EMP compatible
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Ion acceleration station

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1350 mm

Micrometric precision and 
repeatability are guaranteed 

for the five degrees of 
freedom

 Up to 900 targets
 Max repetition rate: 3 Hz
 Five degrees of freedom
 XY = 105 mm @10 µm resolution, >20 mm/s
 Z = 25 mm @1 µm resolution, < 10 mm/s
 Tilt and rotation, ±2° @ 20 µrad resolution
 EMP compatible
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Particles acceleration principles

Target Normal Sheath 
Acceleration (TNSA)
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Laser-wakefield
acceleration (LWFA)
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Transport beamline and diagnostic for ion beams

SEM
ICT

Faraday cup

Scintillator SiC & Diamond

Transport up to 30 MeV with 
an energy revolution of 5 %

Permanent Magnet Quadrupoles

Energy Selection System

Diagnostic System

Dosimetric System

Transport System

Protons /Ions
Max energy 50 MeV
Particle per pulse (at 30 MeV) 1011 MeV-1 sr-1

A Thomson Parabola Spectrometer (TPS) is currently under construction



14

From past to future: 2018 ->

INFN-LNS realised and is commissioning the first Users-open beamline for laser-driven ion beams

Beam exit

Ionisation 
chambers Absolute dosimetry 

and irradiation 
point

Protons up to 60 
MeV; 109 pr shot03/04/2025

• GAP Cirrone et al., Laser Driven User Facilities and Status of I-LUCE at Laboratori Nazionali del Sud of INFN (ITALY) , RAD Conference Proceedings, 2025, (Accepted).
• GAP Cirrone et al., Beam Delivery Methods for Laser-Driven Proton Sources, NIMA 2025 (Submitted).
• G Petringa, et al., A comprehensive Beamline for Proton and Ion Beams Accelerated via Laser-plasma Interaction: the Approach Implemented at the I-LUCE Facility, RAD Conference

Proceedings, 2025 (Accepted).
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Electrons acceleration station

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1000 mm

Two different approaches will be adopted, based 
on gas sources and LWFA mechanism:

- Plasma Discharge Capillary   
- Gas jet system
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Electrons acceleration station
Two different approaches will be adopted, based 
on gas sources and LWFA mechanism:

- Plasma Discharge Capillary   
- Gas jet system

Electrons
Max energy 3 GeV
Particles per pulse 109

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1350 mm

- a small diameter tube
- a HV discharge is applied across the

gas-filled capillary forming a plasma
with a pa-
parabolic transverse density profile

- the laser pulse is focused into the
plasma channel pushing away
electrons from the plasma and creating
a region of positive

- this forms a strong electrical
longitudinal field (10-100 GV/m)

- the electrons are finally accelerated to
high energies over just few centimeters

Courtesy: INFN-LNF
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Electrons acceleration station
Two different approaches will be adopted, based 
on gas sources and LWFA mechanism:
ouse

- Plasma Discharge Capillary (INFN-LNS in-house 
development)

- Gas jet system

Electrons
Max energy 3 GeV
Particles per pulse 109

Plasma Lab
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Electrons acceleration station
Two different approaches will be adopted, based 
on gas sources and LWFA mechanism:

- Plasma Discharge Capillary
- Gas jet system

Electrons
Max energy 3 GeV
Particles per pulse 109

ion acceleration

electron acceleration

OAP 270 mm

OAP 2700 mm OAP 1350 mm

- supersonic gas-jet injection into a
vacuum chamber using a special nozzle

- the gas, usually He or a mix of He and
N with a carefully controlled density,
serves as the target that will form the
plasma

- the high-intensity and ultra-short laser
pul-se is focused directly onto the gas-
jet, thus stripping electrons from the
gas and crea-ting the plasma

- the electrical longitudinal field
accelerates electrons to high energies
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Electrons acceleration station
Diagnostic Systems:
• Optical Emission Spectroscopy
• Interferometry (Mach-Zehnder)
• Wavefront sensors
• Near and far field beam spatial profiles

Mach Zehnder Interferometer Spectroscopy system
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Plasma Discharge in Capillary with COMSOL MULTIPHYSICS

3cm-long capillary filled with argon gas with two different longitudinal profiles: 

- 1mm-diameter (top)
- tapered one featuring a 1 mm entrance and a 200 um exit diameters (bottom)
- 10 mbar, 15 kV
- R=20 𝛀𝛀, C= 5 nF

An increased plasma density at the capillary exit which compresses the
plasma, enhancing coupling with the accelerating fields and optimizing
electron injection and acceleration.

Further characterization → multi-ramping shapes and dual gas injection
profiles.

Electrons acceleration station

Better beam quality

Arjmand et al., Preformed plasma waveguides: Enabling high-energy electron beams for 
FLASH radiotherapy, NIMA (2025)
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I-LUCE Laser parameters and expected beams (L2)

Laser Power 45 TW
Energy per pulse ≥ 1.5 J

Pulse Duration ≤ 23 fs

Focusing surface 36 um2

Max power density (at the target) 1.21 × 1020

Contrast Ratio @ 100 ps < 1010

Repetition rate 10 Hz

Proton ions Max energy 4 MeV

Particle per pulse (at 2 MeV) 1011 MeV-1 sr-1

Energy spread 100%

Max beam divergency ± 20°

Electrons Max energy 0.1 GeV

Particle per pulse 109

Max beam divergency ± 20 mrad

Neutrons Max energy TBD

Gamma beams Synchrotron radiation of the 
e- inside the plasma or 

bremsstrahlung

Max energy up to 20 MeV

Laser Power 320 TW
Energy per pulse ≥ 7 J

Pulse Duration ≤ 23 fs

Focusing surface 36 um2

Max power density (at the target) 8.82 × 1020

Contrast Ratio @ 100 ps < 1010

Repetition rate 2.5 Hz

Proton ions Max energy 50 MeV

Particle per pulse (at 2 MeV) 1011 MeV-1 sr-1

Energy spread 100%

Max beam divergency ± 20°

Electrons Max energy 3 GeV

Particle per pulse 109

Max beam divergency ± 20 mrad

Neutrons Max energy 20

Gamma beams Synchrotron radiation of the 
e- inside the plasma or 

bremsstrahlung

Max energy up to 80 MeV
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I-LUCE Laser parameters and expected beams (L2)
To perform dedicated dose studies, we developed a custom Geant4-based MC application that simulates dose depo-
sition from laser-driven beams in complex geometries.

• The input beam parameters (220 MeV, 120 pC, few-fs duration) were based on measurements from a standard
capillary setup.

• Four electron bunches were simulated entering a 400 × 400 × 400 mm3 water tank from orthogonal directions,
with a 40 × 40 × 40 mm3 tumor located at the center.

2D dose map in the central plane 
of the water tank

• The 4 beams converge to deliver a uniform
10 × 10 mm- dose profile at FWHM

• Geant4-based simulations, scaled to 120 pC
per bunch, yield a deposited dose of 0.180
Gy per four bunches.

• With kHz-class lasers generating such beams
dose rates could reach 42.5 Gy/s - enabling
VHEET and FLASH-RT

Absorbed dose profile
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• Stopping power in plasma
• Positrons generation 
• Radioisotopes production
• Nuclear reaction schemes
• Hydrogen generation
• Conventional ions (4 AMeV – 80 AMeV) – plasma interaction
• From fs to ps plasmas
• Nuclear beta decay in plasmas of isomeric states on interest in 

nucleosyntesys
• Reaction of astrophysical interest
• Inertial fusion studies
• Warm Dense Matter studies

Other applications
Chapter 6.2 Laser applications

C Agodi et al., Eur. Phys. J. Plus (2023) 138:1038 

Nuclear and nuclear astrophysics station
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Concluding remarks

 Protons acceleration up to 50 MeV with solid target

 Electrons acceleration up to 3 GeV with capillary and gas-jet system

 Neutron beam

 Irradiations stations for protons and electrons for medical and multidisciplinary applications
- Radiobiology

- VHEE and FLASH radiotherapy applications

- Material science

 Interaction of conventional ion beams with laser-generated plasmas

 End of installation: Middle 2026

 End of commissioning: within 2027

 Opening of the facility to users: beginning 2028
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Thank you for your 
attention
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